MOTION IN A PLANE

1.	A ball rolls of the top of st	tair-way with a horizontal v	velocity of magnitude 1.8 m	ns^{-1} . The steps are 0.20 m
	high and 0.20 m wide. Wl	nich step will the ball hit fir	st?	
	a) First	b) Second	c) Third	d) Fourth
2.	A body of mass $100 g$ is r	otating in a circular path of	f radius r with constant vel	ocity. The work done in one
	complete revolution is			
	a) 100 <i>rJ</i>	b) $(r/100)J$	c) $(100/r)J$	d) Zero
3.	In uniform circular motio	on of a particle		
	a) Velocity is constant bu	t acceleration is variable		
	b) Velocity is variable but	t acceleration in constant		
	c) Both speed and accele	ration are constant		
	d) Speed is constant but a	acceleration is variable		
4.	A small sphere is attached	d to a cord and rotates in a	vertical circle about a poin	t O. If the average speed of
	the sphere is increased, t	he cord is most likely to bre	eak at the orientation when	the mass is at
	A			
	\sim			
	$C \left(\begin{array}{c} O \\ O \end{array} \right) D$			
	R			
	a) Bottom point B	b) Top point A	c) The point D	d) The point C
5.	A stone of mass 1 kg tied	to a light inextensible strin	g of length $L = \frac{10}{10}$ is whirling	ng in a circular path of
		. If the ratio of the maximur	The state of the s	
	- : (-) : [-] - [e at the highest point of the		en en fan de transferier en en de fan de De fan fan de fan d
	a) 10 ms ⁻¹	b) $5\sqrt{2}$ ms ⁻¹	c) $10\sqrt{3} \text{ ms}^{-1}$	d) 20 ms ⁻¹
	V.50			
6.		nanges its velocity from 30l	kms i north to 40kms i ea	ast in 20 s. what is the
	average acceleration duri		12.2.51 =2 .252.1 .55	
	a) 2.5 kms ⁻² at 37° E of S		b) 2.5 kms ⁻² at 37° N of E	
	c) 2.5 kms ⁻² at 37° N of S		d) 2.5 kms ⁻² at 37° E of N	
7.		to a maximum distance of 8	30 m. The maximum height	to which it will rise in
	metre, is	13.00	3.40	D 40
	a) 30 m		c) 10 m	d) 40 m
8.		f mass m and length L is dis		
	70 070	70 00 000		minimum strength must be
0020	a) mg	b) 2 mg	c) 3 mg	d) 4 mg
9.		rizontally with a constant v		
	-	starts dropping packets at o		
	separation between two	consecutive points of impa	ct on the ground, then for t	he first three packets, R_1/R_2
	is			
	a) 1		b) >1	
	c) <1		d) Sufficient data is not gi	iven

10.	A particle is acted upon b	y a force of constant magn	nitude which is always perp	pendicular to the velocity of	
	the particle. The motion o	f the particle takes place in	a plane it follows that		
	a) Its velocity is constant		b) Its acceleration is cons	tant	
	c) Its kinetic energy is con		d) It moves in a straight li		
11.	190 miles	om the window of a train m	noving along a horizontal st	traight track. The stone will	
	hit the ground following				
	a) Straight path	The state of the s	c) Parabolic path		
12.	10 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d	4.TO	takes a turn around a circul	lar road of radius $20\sqrt{3} m$	
		= $9.8 ms^{-2}$, what is his in		1226-174112E	
2020	a) 30°	b) 90°	c) 45°	d) 60°	
13.			the horizontal, its horizon		
	1.75	T 8 (E)	th the same speed at some	E	
			t is T_2 . The product of T_1 and	* . -	
	a) $\frac{\kappa}{-}$	b) $\frac{2R}{g}$	c) $\frac{3R}{g}$	d) $\frac{4R}{g}$	
11	g	g = gr ²	g		
14.			gle of projection is given by		
	a) $\tan \theta = \frac{1}{\sqrt{3}}$	b) $\tan \theta = \sqrt{3}$	c) $\frac{\pi}{2}$	d) Zero	
15.	A cyclist is moving on a ci	rcular track of radius 80 m	with a velocity $v = 36$ kmh	⁻¹ . He has to lean from the	
	vertical approximately through an angle				
	$(take g = 10 ms^{-2})$				
	a) $tan^{-1}(4)$	b) $\tan^{-1}\left(\frac{1}{3}\right)$	c) $\tan^{-1}\left(\frac{1}{4}\right)$	d) $\tan^{-1}\left(\frac{1}{8}\right)$	
16.	A particle of mass m is fix	ed to one end of a light spr	ing of force constant k and	unstretched length $\it l$. The	
	1770		vith an angular velocity ω ,	in gravity free space. As	
	shown in figure the increa	ase in length of the spring v	vill be		
	m 6,21	m (1)21	m 4,21	d) None of these	
	a) $\frac{m \omega^2 l}{k}$	b) $\frac{m \omega^2 l}{k - m \omega^2}$	c) $\frac{m w t}{k + m \omega^2}$	u) None of these	
	7025FG 7000	20 10000 20	h metre vertically, then the	maximum distance	
	-	rown horizontally by the s			
	a) $\frac{h}{2}$	MW W23		4) 21	
	$\frac{a}{2}$	b) h	c) 2h	d) 3h	
18.	A particle is tied to 20cm	long string. It performs cir	cular motion in vertical pla	ne. What is the angular	
		n the tension in the string a	1,01		
	a) 5 rad/sec	b) 2 rad/sec	c) 7.5 rad/sec	d) 7 rad/sec	
19.		um tensions in the string v	vhirling in a circle of radius	3 2.5 m are in the ratio 5:3,	
	then its velocity is	2	9 <u>4 48</u> (3)	<u># 8</u> 2	
	a) $\sqrt{98} \text{ ms}^{-1}$	b) 7 ms ⁻¹	c) $\sqrt{490} \text{ ms}^{-1}$	d) $\sqrt{4.9} \text{ ms}^{-1}$	
20.	[1] [1] [2] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	- HONG -	equal speeds in such direct	있으므로 한 경영에 등으로 있는 일반 시간 전에 있었다. "FT 경영 시급이 되고 있다면 되었다면 되었다" [18] [18] [18] [18]	
			be the angle of projection	of the first body with the	
	horizontal the ratio of the		205 W		
	a) $\frac{\cos \alpha}{\sin(\alpha + \beta)}$	b) $\frac{\sin(\alpha + \beta)}{\cos \alpha}$	c) $\frac{\cos \alpha}{\sin(\alpha - \beta)}$	d) $\frac{\sin(\alpha - \beta)}{\cos \alpha}$	
21		0000	South and the second of the se	cosu	
21.		willen die norizontal rang	e and maximum height of p	rojectile are equal is	
	a) 45° c) $\theta = \tan^{-1} 4$ or $(\theta = 76)^{\circ}$	9)	b) $\theta = \tan^{-1}(0.25)$		
	$c_{J}\theta = tan - 40r(\theta = 76$)	d) 60°		

- 22. A body slides down a frictionless track which ends in a circular loop of diameter D. Then the minimum height h of the body in terms of D so that it may just complete the loop, is
 - a) $h = \frac{5}{2}D$
- b) $h = \frac{3}{2}D$
- c) $h = \frac{5}{4}D$
- 23. A force $\vec{F} = 2\hat{i} + 2\hat{j}$ N displaces a particle through $\vec{S} = 2\hat{i} + 2\hat{k}$ m in 16 s. The power developed by \vec{F} is b) $25 \, \mathrm{I \, s^{-1}}$ c) 225 J s^{-1} a) $0.25 \,\mathrm{J \, s^{-1}}$
- 24. A sphere of mass m is tied to end of a string of length l and rotated through the other end along a horizontal circular path with speed v. The work done in full horizontal circle is
 - a) 0

- d) $\left(\frac{mv^2}{l}\right)$. (l)
- 25. Two projectile are thrown with the same initial velocity at angles α and (90° α) with the horizontal. The maximum heights attained by them are h_1 and h_2 respectively. Then $\frac{h_1}{h_2}$ is equal to
 - a) $\sin^2 \alpha$
- b) $\cos^2 \alpha$
- c) $tan^2 \alpha$
- 26. A particle *P* is at the origin starts with velocity $\vec{\mathbf{v}} = (2\hat{\mathbf{i}} 4\hat{\mathbf{j}})\text{ms}^{-1}$ with constant acceleration $(3\hat{i} - 5\hat{j})$ ms⁻². After travelling for 2 s, its distance from the origin is
- b) 10.2 m
- c) 9.8 m
- 27. A small sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. The force acting on the sphere are shown in figure. Which of the following statements is wrong?

- a) $P = W tan \theta$
- b) $\vec{T} + \vec{P} + \vec{W} = 0$ c) $T^2 = P^2 + W^2$ d) T = P + W

- 28. A particle moves in a circle of radius 30cm. Its liner speed is given by v = 2t, where t is in second and v in ms^{-1} . Find out its, radial and tangential acceleration at t=3s, respectively,
 - a) 220 ms^{-2} , 50 ms^{-2}
- b) 100 ms^{-2} , 5 ms^{-2} c) 120 ms^{-2} , 2 ms^{-2}
- d) 110 ms^{-2} , 10 ms^{-2}
- 29. A small particle of mass m is projected at an angle θ with the x-axis with an initial velocity v_0 in the x-yplane as shown in the figure. At a time $t<\frac{v_0\sin\theta}{g}$, the angular momentum of the particle is

- a) $-mgv_0t^2\cos\theta\,\hat{\mathbf{j}}$
- b) $mgv_0t\cos\theta \hat{\mathbf{k}}$
- c) $-\frac{1}{2}mgv_0t^2\cos\theta \hat{\mathbf{k}}$ d) $\frac{1}{2}mgv_0t^2\cos\theta \hat{\mathbf{i}}$
- 30. A body is thrown upward from the earth surface with velocity 5 m/s and from a planet surface with velocity 3 m/s. Both follow the same path. What is the projectile acceleration due to gravity on the planet a) $2 m/s^2$ b) $3.5 \, m/s^2$ c) $4 m/s^2$ d) $5 m/s^2$
- 31. An unbanked curve has a radius of 60 m. The maximum speed at which the car make a turn is (Take $\mu =$ 0.75)
 - a) 7 ms^{-1}
- b) 14 ms^{-1}
- c) 21 ms^{-1}
- d) 2.1 ms^{-1}

32.	A fly wheel rotates about	a fixed axis and slows dow	n from 300 rpm to 100 rpn	n in 2 min. Then its angular
	retardation in rad/min is			
	a) $\frac{100}{\pi}$	b) 100	c) 100 π	d) 200 π
33.	three particles of equal m goes vertically downward	asses. One goes vertically t ls. What is the velocity of th		0 ms ⁻¹ , the second particle
	a) 120 ms^{-1} making 60° a c) 300 ms^{-1}	angie with norizontal	 b) 200 ms⁻¹ making 60° a d) 200 ms⁻¹ 	angie with norizontal
34.	A car is moving on a circu wheels respectively, then	E	fR_1 and R_2 be the reactions	s on the inner and outer
	a) $R_1 = R_2$		c) $R_1 > R_2$	$d) R_1 \ge R_2$
35.	If the vector $\vec{A} = 2\hat{\imath} + 4\hat{\jmath}$ a	nd $\vec{B} = 5\hat{\imath} + p\hat{\jmath}$ are paralle	l to each other, the magnitu	ıde of B is
	a) 5√5	b) 10	c) 15	d) $2\sqrt{5}$
36.	A body is revolving with a	uniform speed v in a circle	le of radius r . The tangentia	al acceleration is
	a) $\frac{v}{r}$	b) $\frac{v^2}{r}$	c) Zero	d) $\frac{v}{r^2}$
37.			The greatest speed with we st point is $(g = 10 \text{ms}^{-2})$ (
	a) 40 ms ⁻¹	b) 20 ms ⁻¹	c) 30 ms ⁻¹	d) 15 ms^{-1}
38.	A car is moving with high	velocity when it has a turn	. A force acts on it outward	ly because of
	a) Centripetal force	b) Centrifugal force	c) Gravitational force	d) All the above
39.	If time of flight of a project be	tile is 10 seconds. Range is	500 meters. The maximum	n height attained by it will
	a) 125 m	b) 50 m	c) 100 m	d) 150 m
40.			angle of 45° to the horizon	
			ximum height is $(g = 10 \text{ ms}^{-1})$	d) $20\sqrt{5} \text{ ms}^{-1}$
44		b) $10\sqrt{5} \text{ ms}^{-1}$		
41.	stone will be	igle o to the norizontal read	ches a maximum heights <i>H</i>	. then the time of flight of
	a) $\frac{2H}{a}$	2 <i>H</i>	$2\sqrt{2H}\sin\theta$	d) $\frac{\sqrt{2H\sin\theta}}{}$
	$\frac{a}{\sqrt{g}}$	b) $2\sqrt{\frac{2H}{g}}$	c) $\frac{2\sqrt{2H}\sin\theta}{g}$	$\frac{d}{g}$
42	A particle does uniform ci	v ircular motion in a horizon	tal plane. The radius of the	circle is 20 cm. The
12.	100	n the particle is 10 N. It's ki	0	circle is 20 cm rife
	a) 0.1 <i>J</i>	b) 0.2 <i>J</i>	c) 2.0 J	d) 1.0 J
43.			ne with constant angular ve	
2002	a) Maximum at highest po	en de paramente automatique de commence de la comme	b) Maximum at lowest po	5 TO 100 TO
	c) Same at all lower point		d) Zero	
44.	· · · · · · · · · · · · · · · · · · ·		is $\sqrt{3}$ times their scalar pro	duct. The angle between
	the two vectors is	tors produces the rectors	is vo times then sealar pre	auca ine angre between
	a) 90°	b) 60°	c) 45°	d) 30°
45.	5-10 2 9 3-900M	20.00	orner of a cube along three	1000 1000 100
	Resultant of these forces			

a)	12	N	al	on	g	0	В

b) 18 N along OA

c) 18 N along OC

d) 12 N along *OE*

46. The angle which the bicycle and its rider must make with the vertical when going round a curve of 7 m radius at 5 ms⁻¹ is

a) 20°

b) 15°

c) 10°

d) 5°

47. A projectile is thrown at angle β with vertical. It reaches a maximum height H. The time taken to reach the highest point of its path is

b) $\sqrt{\frac{2H}{g}}$

c) $\sqrt{\frac{H}{2g}}$

d) $\frac{2H}{g\cos\beta}$

48. A cart is moving horizontally along a straight line with constant speed 30 m/s. A projectile is to be fired from the moving cart in such a way that it will return to the cart after the cart has moved 80 m. At what speed (relative to the cart) must the projectile be fired (Take $g = 10 \text{ m/s}^2$)

a) $10 \, m/s$

b) $10\sqrt{8} \, m/s$

c) $\frac{40}{3} m/s$

d) None of these

49. A sphere of mass 0.2 kg is attached to an inextensible string of length 0.5 m whose upper end is fixed to the ceiling. The sphere is made to describe a horizontal circle of radius 0.3 m. The speed of the sphere will be

a) 1.5 m s^{-1}

b) 2.5 m s^{-1}

c) 3.2 m s^{-1}

d) 4.7 m s^{-1}

50. The resultant of two vectors \vec{A} and \vec{B} is perpendicular to the vector \vec{A} and its magnitude is equal to half of the magnitude of vector \vec{B} . Then the angle between \vec{A} and \vec{B} is

b) 45°

d) 120°

51. What is the smallest radius of a circle at which a cyclist can travel if its speed is 36 kmh⁻¹, angle of inclination 45° and $g = 10 \text{ms}^{-2}$?

a) 20 m

b) 10 m

c) 30 m

d) 40 m

52. A body of mass m moves in a circular path with uniform angular velocity. The motion of the body has constant

a) Acceleration

b) Velocity

c) Momentum

d) Kinetic energy

53. A body of mass *m* is suspended from a string of length *l*. What is minimum horizontal velocity that should be given to the body in its lowest position so that it may complete one full revolution in the vertical plane with the point of suspension as the centre of the circle

a) $v = \sqrt{2lg}$

b) $v = \sqrt{3lg}$

c) $v = \sqrt{4lg}$

d) $v = \sqrt{5lg}$

54. A car is travelling with linear velocity v on a circular road of radius r. If it is increasing its speed at the rate of $a'm/s^2$, then the resultant acceleration will be

b) $\sqrt{\left\{\frac{v^4}{r^2} + a^2\right\}}$ c) $\sqrt{\left\{\frac{v^4}{r^2} - a^2\right\}}$

 $\mathrm{d} \int \left\{ \frac{v^2}{r^2} + a^2 \right\}$

55. $(\vec{P} + \vec{Q})$ is a unit vector along *X*-axis. If $\vec{P} = \hat{i} - \hat{j} + \hat{k}$, then what value is \vec{Q} ?

a) $\hat{i} + \hat{j} - \hat{k}$

b) $\hat{j} - \hat{k}$

c) $\hat{i} + \hat{j} + \hat{k}$

d) $\hat{i} + \hat{k}$

56. For a projection, (range)² is 48 times of (maximum height)² obtained. Find angle projection.

b) 30°

c) 45°

57. A small roller coaster starts at point A with a speed u on a curved track as shown in figure

The friction between the roller coaster and the track is negligible and it always remains in contact with the track. The speed of the roller coaster at point D on the track will be

a)
$$(u^2 + gh)^{\frac{1}{2}}$$

b)
$$(u^2 + 2gh)^{\frac{1}{2}}$$
 c) $(u^2 + 4gh)^{\frac{1}{2}}$

c)
$$(u^2 + 4gh)^{\frac{1}{2}}$$

58. A particle rests on the top of a hemisphere of radius R. Find the smallest horizontal velocity that must be imparted to the particle if it is to leave the hemisphere without sliding down it

a)
$$\sqrt{gR}$$

b)
$$\sqrt{2gR}$$

c)
$$\sqrt{3gR}$$

1)
$$\sqrt{5gR}$$

59. A 2 kg stone tied at the end of a string 1 m long is whirled along a vertical circle at a constant speed of 4 ms⁻¹. The tension in the string has a value of 52 N when the stone is

a) At the top of the circle

b) Half way down

c) At the bottom of the circle

d) None of the above

60. A stone thrown at an angle θ to the horizontal a projectile makes an angle $\pi/4$ with the horizontal, then its initial velocity and angle of projection are, respectively

a)
$$\frac{\sqrt{2h\sin\theta}}{g}$$

b)
$$\frac{2\sqrt{2h\sin\theta}}{g}$$

c)
$$2\sqrt{\frac{2h}{g}}$$

d)
$$\sqrt{\frac{2h}{g}}$$

61. Given that centripetal force $F = -k/r^2$. The total energy is

a)
$$-k/r^2$$

b)
$$k/r$$

c)
$$-k/2r^2$$

d)
$$-k/2r$$

62. The area of parallelogram formed from the vectors $\vec{A} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ and $\vec{B} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$ as adjacent sides is

a) $8\sqrt{3}$ units

d)
$$4\sqrt{6}$$
 units

63. Two vectors \vec{A} and \vec{B} are inclined to each other at an angle θ . Which of the following is the unit vector perpendicular to both \vec{A} and \vec{B} ?

a)
$$\frac{\vec{A} \times \vec{B}}{\vec{A} \cdot \vec{B}}$$

b)
$$\frac{\widehat{A} \cdot \widehat{B}}{\sin \theta}$$

c)
$$\frac{\vec{A} \times \vec{B}}{AB\sin\theta}$$

d)
$$\frac{\widehat{A} \times \widehat{B}}{AB\cos\theta}$$

64. A coastguard ship locates a pirate ship at a distance 560 m. It fires a cannon ball with an initial speed 82 m/s. At what angle from horizontal the ball must be fired so that it hits the pirate ship

a) 54°

65. What happens to the centripetal acceleration of a particle, when its speed is doubled and angular velocity is halved?

a) Doubled

b) Halved

c) Remains unchanged

d) Becomes 4 times

66. A particle moves in a circular path with decreasing speed. Choose the correct statement

- a) Angular momentum remains constant
- b) Acceleration (\vec{a}) is towards the centre
- c) Particle moves in a spiral path with decreasing radius
- d) The direction of angular momentum remains constant

67. An object is projected so that its horizontal range R is maximum. If the maximum height attained by the object is H, then the ratio of R/H is

c) 2

68. A cricketer can throw a ball to a maximum horizontal distance of 100 m. The speed with which he throws the ball is (to the nearest integer)

a) $30 \, ms^{-1}$

b) $42 \, ms^{-1}$

c) $32 \, ms^{-1}$

69. The maximum height attained by a projectile when thrown at an angle θ with the horizontal is found to be half the horizontal range. Then θ is equal to

	a) $tan^{-2}(2)$	b) $\frac{\pi}{6}$	c) $\frac{\pi}{4}$	d) $\tan^{-1}\left(\frac{1}{2}\right)$
70.	The angular velocity of a wheel is	wheel is 70 rad/sec. If the	radius of the wheel is 0.5 n	n, then linear velocity of the
	a) $70 m/s$	b) 35 m/s	c) 30 m/s	d) 20 m/s
71.	A particle undergoes unif	orm circular motion. About	t which point on the plane	of the circle, will the angular
	momentum of the particle	e remain conserved?		
	a) center of the circle		b) on the circumference of	of the circle
	c) inside the circle		d) outside the circle	
72.	An aeroplane is flying hor	rizontally with a velocity of	$216 \mathrm{kmh^{-1}}$ and at a height	t of 1960 m. When it is
	vertically above a point A	on the ground, a bomb is r	eleased from it. The bomb	strikes the ground at point
	B. The distance AB is (ign	noring air resistance)		
	a) 1200 m	b) 0.33 km	c) 3.33 km	d) 33 km
73.	If the magnitude of the su	im of the two vectors is equ	al to the difference of their	r magnitudes, then the angle
	between vectors is			
	a) 0°	b) 45°	c) 90°	d) 180°
74.	Which of the following se	ts of factors will affect the l	norizontal distance covered	d by an athlete in a long-
	jump event			
	a) Speed before he jumps	and his weight	b) The direction in which	he leaps and the initial
			speed	
	c) The force with which h	ne pushes the ground and	d) None of these	
	his speed			
75.	A point of application of a	a force $\vec{F} = 5\hat{\imath} - 4\hat{\jmath} + 2\hat{k}$ is n	noved from $\vec{r_1} = 2\hat{\imath} + 7\hat{\jmath} + 4\hat{\jmath}$	$4\hat{k}$ to $\vec{r_2} = 5\hat{i} + 2\hat{j} + 3\hat{k}$ the
	work done is			
		b) -22 units		
76.	If a particle of mass m is	moving in a horizontal circ	le of radius r with a centrip	petal force $(-K/r^2)$ the
	total energy is			
	a) $-\frac{K}{2r}$	b) $-\frac{K}{r}$	c) $-\frac{2K}{}$	d) $-\frac{4K}{r}$
77	NATIONAL CONTRACTOR OF THE PROPERTY OF THE PRO	TANKS OF THE STATE	Constant of the con-	r
//.	The state of the s	of a force are 2 N and -3N.		d) 3î + 2ĵ
70	a) $2\hat{i} - 3\hat{j}$	b) 2î + 3ĵ nplete the circular loop wh	cj -21 - 5j	
70.	As per given future to cor	iipiete tile circular loop wii	at should be the radius if h	iitiai neight is 5 m
		_		
	h = 5 m			
)		
		13.0		11.0
70	a) 4 m	b) 3 m	c) 2.5 m	d) 2 m
79.	·	m the ground at an angle o		하루 맛요하더 맛있다는 그도 되었다면 하는 하는 사람이 되었다.
		path of the particle, when	its velocity makes an angle	of 30° with norizontal is
	$(g = 10 \text{ ms}^{-2})$	L) 12.0	2) 15 4	1) 242
00	a) 10.6 m	b) 12.8 m	c) 15.4 m	d) 24.2 m
80.		wn with a velocity of 10 ms	at an angle of 60° with t	ne norizontai. Its
	momentum at the highest		c) 4 kg ms ⁻¹	d) 5 kg ms ⁻¹
01	a) 2 kg ms ⁻¹	b) 3 kg ms ⁻¹		
81.		of the string and whirled i	n a vertical circle, the phys	sical quantity which remains
	constant is	L) C	-) Winatia anama	J) T. L.]
02	a) Momentum	b) Speed	c) Kinetic energy	d) Total energy
82.		to one end of a string 2 m lo	이 사람들이 보고 있는데 가장 맛있는데 되는데 하는데 되었다.	
	restriction of the contract of	0 revolutions per min. The	to alikana mana adha a mandha dha baran a matha	
	circle of revolution. The n	naximum tension that the s	u nig can bear is (approxin	nately)

	a) 8.76 N	b) 8.94 N	c) 89.42 N	d) 87.64 N
83.	with the horizontal is	AN INGEN <mark>TO DE COMPENSO EN PERSONA EN P</mark> ERSONA EN PROPERTO DE CONTRA DE CONTRA DE CONTRA DE CONTRA DE CONTRA DE C	horizontal plane. Its speed	
	a) u cos α	b) $\frac{u}{\cos \beta}$	c) $u\cos\alpha\cos\beta$	d) $\frac{a\cos a}{\cos \beta}$
84				s the angular acceleration of
01.	the car?			
	a) 600 rad s ⁻¹		c) $60 \pi \text{rad m s}^{-1}$	17
85.	100			r from the edge of the table.
		ole, then the velocity of pro	jection is	
	4 2 ×	b) $x\sqrt{\frac{g}{2h}}$		d) $gx + h$
86.			igle for a given speed. If the	Management of the control of the streets of the street of the control of the streets of the streets of the street
			ture of the road should be o	
	a) 25 m	b) 100 m	c) 150 m	d) 200 m
87.	With what minimum spee point (30 m, 40 m)?	ed a particle be projected fi	om the origin so that it is a	ble to pass through a given
	a) 30 ms^{-1}	b) 40 ms ⁻¹	c) 50 ms ⁻¹	d) 60 ms^{-1}
88.	A wheel rotates with a co one second is	nstant angular velocity of 3	300 rpm. The angle through	which the wheel rotates in
	a) π rad	b) 5π rad	c) 10 π rad	d) 20π rad
89.	A cricketer hits a ball with	h a velocity $25~m/s$ at 60° a	bove the horizontal. How f	ar above the ground it
	passes over a fielder 50 n	\imath from the bat (assume the	ball is struck very close th	the ground)
	a) 8.2 m	b) 9.0 m	c) 11.6 m	d) 12.7 m
90.	A bucket filled with water	r is tied to a rope of length	0.5 m and is rotated in a cir	cular path in vertical pane.
	The least velocity it shoul	d have at the lowest point	of circle so that water dose	not spill is, $(g = 10 \text{ ms}^{-2})$
	a) $\sqrt{5} \text{ ms}^{-1}$	b) $\sqrt{10} \text{ ms}^{-1}$	c) 5 ms ⁻¹	d) $2\sqrt{5} \text{ ms}^{-1}$
91.	An object of mass 5 kg is	whirled round in a vertical	circle of radius 2 m with a	constant speed of 6 ms ⁻¹ .
	The maximum tension in	the string is		
	a) 152 N	b) 139 N	c) 121 N	d) 103 N
92.	A body just being revolve	d in a vertical circle of radi	us R with a uniform speed.	The string breaks when the
	body is at the highest poin	nt. The horizontal distance	covered by the body after t	the string breaks is
	a) 2 R	b) R	c) $R\sqrt{2}$	d) 4 R
93.	The coefficient of friction	between the tyres and the	road is 0.25. The maximum	n speed with which a car
	can be driven round a cur	ve a radius 40 m without s	kidding is (assume $g = 10$	ms^{-2})
	a) $40 ms^{-1}$	b) $20 ms^{-1}$	c) $15 ms^{-1}$	d) $10 ms^{-1}$
94.	A car wheel is rotated to	uniform angular acceleratio	on about its axis. Initially its	s angular velocity is zero. It
	rotates through an angle	$ heta_1$ in the first $2 ext{s}$, in the ne	xt 2 s, it rotates through an	additional angle θ_2 , the
	ratio of $\frac{\theta_2}{\theta_1}$ is			
	(C) .	13.2	3.2	25.5
0.5	a) 1	b) 2	c) 3	d) 5
95.		e circle of radius <i>R</i> with co		2
	a) Change in momentum	is mvr	b) Change in <i>K</i> . <i>E</i> . is 1/2 <i>i</i>	nv-
0.6	c) Change in $K.E.$ is mv^2		d) Change in K. E. is zero	. m 1 66
96.	이는 사람들이 가장 하는 것이 되었다. 그 아이들은 그리고 있다면 없는데 되었다.	s rotating about its own ax	is with uniform angular vel	ocity ω . The shape of free
	surface of water will be	13 800 1	3.60	D 0 1 1
0.5	a) Parabola	b) Elliptical	c) Circular	d) Spherical
97.	What is the angle betwee			15.57
	a) 0°	b) $\pi/6$	c) π/3	d) None of these

98.	270	55		f friction is 0.5. What should be its	
	THE PARTY OF THE P	200 - Mary 1988 (1989) - Marie (1980) - Mary 1988 (1989)	om the surface? ($g = 9.8 \text{ ms}$	1510 se 161 i dispersió	
	a) 5	b) 10	c) 0.1	d) 0.7	
99.	An object is projected reached will be in the		the horizontal. The horizon	ital range and maximum height	
	a) 1:2	b) 2:1	c) 1:4	d) 4:1	
100	. A car sometimes ove	rturns while taking a tui	rn. When it overturns, it is		
	a) The inner wheel w	which leaves the ground	first		
	b) The outer wheel w	which leaves the ground	first		
	c) Both the wheels le	eave the ground simultar	neously		
	d) Either wheel leave	es the ground first			
101	. A projectile is fired w	vith a velocity \emph{v} at an an	gle θ with the horizontal. Th	ne speed of the projectile when its	
	direction of motion n	nakes an angle β with th	e horizontal is		
	a) $v\cos\theta$	b) $v \cos \theta \cos \beta$	c) $v \cos \theta \sec \beta$	d) $v \cos \theta \tan \beta$	
102	. A body is projected v	vith speed $v~{ m ms^{-1}}$ at ang	gle θ . The kinetic energy at t	he highest point is half of the	
	initial kinetic energy	. The value of θ is			
	a) 30°	b) 45°	c) 60°	d) 90°	
103	. The range of particle when launched at an angle 15° with the horizontal is 1.5 km. What is the range of				
	projectile when laun	ched at an angle of 45° t	o the horizontal?		
	a) 3.0 km	b) 1.5 km	c) 6.0 km	d) 0.75 km	
104	In a vertical circle of	radius r , at what point i	n its path a particle has tens	sion equal to zero if it is just able to	
	complete the vertical	l circle			
	a) Highest point		b) Lowest point		
	c) Any point		d) $\frac{At a point horizon}{radius r}$	ontally from the centre of circle of	
105	. A particle comes rou	nd a circle of radius $1m$	once. The time taken by it i	s 10 sec. The average velocity of	
	motion is				
	a) $0.2 \pi m/s$	b) $2 \pi m/s$	c) 2 m/s	d) Zero	
106	A car of mass 1000 k	g negotiates a banked cu	arve of radius $90 m$ on a fric	tionless road. If the banking angle	
	is 45°, the speed of the	ne car is			
	a) $20ms^{-1}$	b) $30ms^{-1}$	c) $5ms^{-1}$	d) $10ms^{-1}$	
107	. What is the unit vect	or along î + ĵ?			
	a) $\frac{\hat{1} + \hat{j}}{\sqrt{2}}$	b) $\sqrt{2}(\hat{i}+\hat{j})$	c) î + ĵ	d) k	
100	V 2		las in the form of a continal.	ous is 0.0 ms ⁻¹ . The diameter of	
100	the are is	ar over a roadways brid	ige ili the form of a vertical	arc is 9.8 ms ⁻¹ . The diameter of	
		h) 0 0 m	a) 20.2 ···	1) 4.0	
100	a) 19.6 m	b) 9.8 m	c) 39.2 m	d) 4.9 m	
109			cted towards a fixed point. the fixed point. What is the i	The magnitude of the force varies	
	a) Straight line	b) Parabola	c) Circle	d) Hyperbola	
110				the particle at same instant is $\mathbf{v} =$	
				e and anti-clockwise respectively	

	a) 1st and 4 th	b) 2nd and 4th	c) 2 nd and 3rd	d) 3 rd and 4 th
111.	A car is moving along a st	traight horizontal road wit	h a speed v_0 . If the coefficient	ent of friction between tyres
		rtest distance in which the	12	
	a) $\frac{v_0^2}{2\mu q}$	b) $\frac{v_0}{\mu a}$	c) $\left(\frac{v_0}{v_0}\right)^2$	d) $\frac{v_0}{}$
	$2\mu g$	F-8	μg	F .
	: [사용] 1. Til en laid hanglengt ganglengen between het bin hand hand i	le of radius 5 <i>cm</i> with cons	tant speed and time period	$0.2 \ \pi s$. The acceleration of
	the particle is	00000000 VIII	50 E3551 ATTAC	•
		b) $15 m/s^2$		
		d turn of radius 50 m with		15
	a) 250 <i>N</i>	b) 750 <i>N</i>	c) 1000 N	d) 1200 N
114.		radius of curvature 50 m. I		ve the inner edge by a
		d is most suited for vehicle	and the first fill the constant of the constant	
	a) 8.5 ms ⁻¹	b) 6.5 ms ⁻¹	c) 5.5 ms^{-1}	d) None of these
115.				tom of this inclined plane, a
	bullet is fired with velocit	y \emph{v} . The maximum possible	e range of the bullet on the	inclined plane is
	a) $\frac{v^2}{g}$	v^2	v^2	v^2
	g g	$\frac{1}{g(1+\sin\theta)}$	c) $\frac{v^2}{g(1-\sin\theta)}$	$\frac{d}{g(1+\sin\theta)^2}$
116.	The maximum range of a	gun on horizontal terrain i	s 16 km. If $g = 10 \text{ m/s}^2$. W	hat must be the muzzle
	velocity of the shell			
	a) 200 m/s	b) 400 m/s	c) 100 m/s	d) 50 m/s
117.	A man projects a coin upv	vards from the gate of a un	iformly moving train. The p	path of coin for the man will
	be			
	a) Parabolic		b) Inclined straight line	
	c) Vertical straight line		d) Horizontal straight line	e
118.	Three vectors \vec{A} , \vec{B} and \vec{C}	satisfy the relation $\vec{A} \cdot \vec{B} =$	$= 0$ and $\vec{A} \cdot \vec{C} = 0$. If \vec{B} and	\vec{C} are not lying in the same
	plane then \vec{A} is parallel to			
	a) \vec{B}	b)	c) $\vec{B} \times \vec{C}$	d) 🛱 . C
110	α) D		3 2 m 1 · · · · · ·	u) b · c
		f a projectile is $y = 12x - \frac{3}{2}$	$\frac{1}{4}x^2$. The horizontal compo	nent of velocity is 3ms ⁻¹ .
	What is the range of the p	(1) 전 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	3.40	D 04 6
	a) 18 m	b) 16 m	c) 12 m	d) 21.6 m
120.		$100m_2$ are moving in circles circles in the same time t . The same time t .		
	a) $m_1r_1:m_2r_2$	b) $m_1 : m_2$	c) $r_1:r_2$	d) 1:1
121.			87 N AT	where t in second and v in
		nd tangential acceleration a	'에서 15명 이 경험 (1985 HOLE) II I I I I I I I I I I I I I I I I I	
	a) $220 m/\sec^2$, $50 m/\sec^2$	c ²	b) $100 m/ \sec^2$, $5 m/\sec$	2
	c) 120 m/sec2, 2 m/sec2		d) $110 m/\sec^2$, $10 m/\sec$	c^2
		ed simultaneously in the sa		
		7.1		one, as seed by the other, is
	a) A vertical line			
	b) A parabola			
	c) A hyperbola			
		a constant angle (≠ 90°) w	ith the horizontal	
123.	5 50 50 150			adius on a level road if the
	하다 (이 10년) [10년 1일	veen the tyres and the road		
	(Acceleration due to grav	. [2] 20 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		
	a) 12 ms ⁻²	b) 10 ms ⁻²	c) 11 ms ⁻²	d) 15 ms $^{-2}$
		-initial vectors is 10 units.		
LL I.	470	to the smaller vector. The n		
	rectors is perpendicular t	o the smaller vector. The h	and and a contraction of the	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

- a) 2 units and 14 units
- b) 4 units and 12 units
- c) 6 units and 10 units
- d) 8 units and 8 units
- 125. The resultant of two forces at right angle is 5N. When the angle between them is 120°, the resultant is $\sqrt{13}$. Then the force are
 - a) $\sqrt{12}$ N, $\sqrt{13}$ N
- b) $\sqrt{20}$ N, $\sqrt{5}$ N
- c) 3 N, 4 N
- d) $\sqrt{40}$ N, $\sqrt{15}$ N
- 126. A man standing on a hill top projects a stone horizontally with speed v_0 as shown in figure. Taking the coordinate system as given in the figure. The coordinates of the point where the stone will hit the hill surface

- a) $\left(\frac{2v_0^2\tan\theta}{g}, \frac{-2v_0^2\tan^2\theta}{g}\right)$
- c) $\left(\frac{2v_0^2 \tan \theta}{g}, \frac{2v_0^2}{g}\right)$

- b) $\left(\frac{2v_0^2}{g}, \frac{2v_0^2 \tan^2 \theta}{g}\right)$
- d) $\left(\frac{2v_0^2 \tan^2 \theta}{g}, \frac{2v_0^2 \tan \theta}{g}\right)$
- 127. Given $\vec{c} = \vec{a} \times \vec{b}$. The angle which \vec{a} makes with \vec{c} is

b) 45°

c) 90°

- d) 180°
- 128. Two bodies are projected from ground with equal speed 20 ms⁻¹ from the same position in the same vertical plane to have equal range but at different angles above the horizontal. If one of the angle is 30° the sum of their maximum heights is (assume $g = 10 \text{ ms}^{-2}$)
 - a) 400 m
- b) 20 m
- c) 30 m
- d) 40 m
- 129. Two bodies of mass 10 kg and 5 kg moving in concentric orbits of radii R and r such that their periods are the same. Then the ratio between their centripetal acceleration is
 - a) R/r
- b) r/R
- c) R^2/r^2
- d) r^2/R^2
- 130. A body is whirled in a horizontal circle of radius 20 cm. It has angular velocity of 10 rad/s. What is its linear velocity at any point on circular path
 - a) $10 \, m/s$
- b) 2 m/s
- c) 20 m/s
- d) $\sqrt{2} m/s$
- 131. A body of mass 0.4 kg is whirled in a vertical circle making 2rev/s. If the radius of the circle is 2m, then tension in the string when the body is at the top of the circle is
- b) 89.86 N
- c) 109.86 N
- d) 115.86 N
- 132. A body is projected horizontally with speed 20 ms⁻¹. The approximate displacement of the body after 5 s is
 - a) 80 m
- b) 120 m
- c) 160 m
- d) 320 m
- 133. A particle moves along a circle of radius $\left(\frac{20}{\pi}\right)$ m with constant tangential acceleration. If the velocity of the particle is 80 ms⁻¹, at the end of seconds revolution after motion has begun, the tangential acceleration is
- b) 640 m s^{-2}
- c) $1609 \,\mathrm{m \, ms^{-2}}$
- 134. A projectile is thrown at angle β with vertical. It reaches a maximum height H. The time taken to reach the highest point of its path is

- b) $\sqrt{\frac{2H}{g}}$
- c) $\sqrt{\frac{H}{2g}}$
- d) $\frac{H}{g \cos \beta}$
- 135. An object of mass 10 kg is whirled round a horizontal circle of radius 4 m by a revolving string inclined 30° to the vertical. If the uniform speed of the object is $5~\text{ms}^{-1}$, the tension in the string (approximately) is
 - a) 720 N
- b) 960 N
- c) 114 N
- d) 125 N

136. The angle between \overline{A}	and \vec{B} is θ , the value of the	triple product $\vec{A} \cdot \vec{B} \times \vec{A}$ is		
a) A^2B	b) Zero	c) $A^2B \sin \theta$	d) $A^2B\cos\theta$	
137. A body crosses the to	opmost point of a vertical c	ircle with critical speed. Wl	nat will be its acceleration when	
the string is horizont	al?			
a) g	b) 2 g	c) 3 g	d) 6 g	
138. A car of mass 2000 k	g is moving with a speed of	f $10~{ m ms^{-1}}$ on a circular path	of radius 20 m on a level road.	
What must be the fri	ctional force between the c	ar and the road so that the	car does not slip?	
a) 10 ⁴ N	b) 10 ³ N	c) 10 ⁵ N	d) 10^2 N	
139. The magnitude of the	$e X$ and Y components of \vec{A}	are 7 and 6. Also the magn	itudes of X and Y components of	
$\vec{A} + \vec{B}$ are 11 and 9 respectively. What is the magnitude of \vec{B} ?				
a) 5	b) 6	c) 8	d) 9	
140. A body of mass m is thrown upwards at an angle θ with the horizontal with velocity v . While rising up the				
velocity of the mass a	after t seconds will be			
a) $\sqrt{(v\cos\theta)^2 + (v\sin\theta)^2}$ b) $\sqrt{(v\cos\theta - v\sin\theta)^2 - gt}$			$(9)^2 - gt$	
c) $\sqrt{v^2 + g^2 t^2 - (2v \sin \theta)gt}$ d) $\sqrt{v^2 + g^2 t^2 - (2v \cos \theta)gt}$				
The Property of the state of th			s speed is increasing at the rate	
_	s the acceleration of the car			
a) $2m/\sec^2$		c) $1.8m/\sec^2$	d) $9.8m/\sec^2$	
	moving particle at time t	are given by $x = ct^2$ and y	$=bt^2$. The instantaneous speed	
of the particle is	nous en major valet 🛶 🎍 e coak decok de trat, la especial - victor e nasca			
a) $2t(b+c)$	b) $2t(b+c)^{1/2}$	c) $2t(c^2 - b^2)$	d) $2t(c^2+b^2)^{1/2}$	
143. A simple pendulum o	scillates in a vertical plane	. When it passes through th	ne mean position, the tension in	
the string is 3 times	the weight of the pendulum	bob. What is the maximum	n displacement of the pendulum	
with respect to the v	ertical			
a) 30°	b) 45°	c) 60°	d) 90°	
144. If a stone s to hit at a	point which is at a distanc	e d away and at a height h :	above the point from where the	
stone starts, then wh	at is the value of initial spe	du, if the stone is launched	l at an angle <i>Q</i> ?	
h Q				

a)
$$\frac{g}{\cos \theta} \sqrt{\frac{d}{2(d \tan \theta - h)}}$$
 b) $\frac{d}{\cos \theta} \sqrt{\frac{g}{2(d \tan \theta - h)}}$ c) $\sqrt{\frac{gd^2}{h \cos^2 \theta}}$

d)
$$\sqrt{\frac{gd^2}{(d-h)}}$$

145. A car is circulating on the path of radius r and at any time its velocity is v and rate of increases of velocity is a. The resultant acceleration of the car will be

a)
$$\sqrt{\frac{v^2}{a^2} + r^2}$$

b)
$$\sqrt{\frac{v^2}{r} + a}$$

c)
$$\sqrt{\frac{v^4}{r^2} + a^2}$$

$$d)\left(\frac{v^2}{r} + a\right)$$

146. A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a_c is varying with time as $a_c = k^2 r t^4$, where k is a constant. The power delivered to the particle by the forces acting on its is

b)
$$mk^2r^2t^2$$

c)
$$\frac{1}{3}mk^2r^2t^2$$

d)
$$2mk^2r^2t^3$$

147. A particle is moving in a vertical circle. The tensions in the string when passing through two positions at angles 30° and 60° from vertical (lowest position) are T_1 and T_2 respectively. then

a)
$$T_1 = T_2$$

b)
$$T_2 > T_2$$

c)
$$T_1 > T_2$$

148. A car is moving on a circula acceleration due to gravity			
	b) 81	c) 108	d) 162
149. A body is projected at an ar		See Character	
highest point of the trajector	(3)	itin minetic energy 2 _K . The p	otential energy at the
10 m	b) $E_k \cos^2 \theta$	c) $E_k \sin^2 \theta$	d) $E_k \tan^2 \theta$
150. There are two forces each			
of 135° to the positive direct	70 - 0 j.	- N. M. B. 1984 - N. B.	and the contract of the contra
	b) 10î and 10ĵ	c) 1.59î	d) 15.9î and 12.07ĵ
151. An aircraft executes a horiz	zontal loop with a speed o	of $150 m/s$ with its wings be	anked at an angle of 12°.
The radius of the loop is $(g$	$g = 10 m/s^2$, tan $12^\circ = 0.2$	2126)	
	b) 9.6 <i>km</i>	c) 7.4 km	d) 5.8 km
152. If $\vec{A} + \vec{B} = \vec{C}$ and $A = \sqrt{3}$,	$B = \sqrt{3}$ and $C = 3$, then the		
	b) 30°	c) 60°	d) 90°
153. The velocity of projection of		$\vec{\mathbf{v}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$ (in ms ⁻¹). The	speed of the projectile at
the highest point of the traj		2 5 4	72
	b) 2 ms ⁻¹ →	c) 1 ms ⁻¹	d) Zero
154. If $\vec{A} \cdot \vec{B} = 0$ and $\vec{A} \times \vec{B} = 1$			
a) Perpendicular unit vecto	ors	b) Parallel unit vectors	
c) Parallel		d) Perpendicular.	
155. A ball of $mass(m)0.5$ kg is			
			ring can bear is 324 N. The
maximum possible value of	i aligular velocity of ball (iii rau/s) is	
<i>L M C M M M M M M M M M M</i>			
a) 9	b) 18	c) 27	d) 36
156. The maximum speed with			
10ms ⁻² and the coefficient			
	b) 18.0 km h ⁻¹	c) 21.6 km h ⁻¹	d) 14.4 km h ⁻¹
157. The minimum speed for a p			
v. If the radius of the circle			
	b) $v/2$	c) 2v	d) 4v
158. The angle of projection of a a) tan ⁻¹ (2)	b) tan ⁻¹ (4)	c) cot ⁻¹ (2)	d) 60°
159. A string of length l is fixed		The second secon	20 M 10 M 10 M
around a vertical axis throu			string makes 2/n 1ps
	b) 16 m l	c) 4 m l	d) 2 m l
160. At what point of a projectil			
a) At the point of projection		b) At the point of drop	•
c) At the topmost point			the point of projection and
161. A motorcycle is going on ar	n overbridge of radius R. T		stant speed. As the
motorcycle is ascending on	10-T		<u>.</u>
	un avec areament artein a 11. M arther Artein alla della		

a) Increases	b) Decreases	c) Remains the same	d) Fluctuates		
162. If \vec{A} and \vec{B} denote the s	ides of a parallelogram and	its area is $\frac{1}{2}AB(A \text{ and } B \text{ are}$	the magnitude of \vec{A} and \vec{B}		
	respectively), the angle between \vec{A} and \vec{B} is				
a) 30°	b) 60°	c) 45°	d) 120°		
163. Given $\vec{r} = 4\hat{j}$ and $\vec{p} = 2\hat{j}$			4) 120		
a) $4\hat{i} - 8\hat{k}$		c) 8î	d) 9k̂		
164. The maximum and min					
velocity are in the ratio	나타일이 맛있다면 하다 하네 하나 아니라 하나 나를 하는데 하나 하나 하나 하나 하나 하나 하나 하나 하나 하는데	willing in a circle of radiu.	5 2.5 m with constant		
a) $\sqrt{98} m/s$	4 (1), 1), 1), 1), 1), 1), 1), 1), 1), 1),	c) $\sqrt{490} m/s$	d) $\sqrt{4.9}$		
			3		
165. Two forces $\overrightarrow{F_1}$ and $\overrightarrow{F_2}$ a					
a) $F_1 + F_2$	b) $\sqrt{F_1^2 + F_2^2}$	ν.	$d)\frac{F_1+F_2}{2}$		
166. If a_r and a_t represent r	adial and tangential acceler	ations, the motion of a part	icle will be uniformly		
circular if					
	b) $a_r \neq 0, a_t \neq 0$				
167. In the above question, i	if the angular velocity is kep	t same but the radius of the	e path is halved, the new		
force will be					
a) 2 <i>F</i>	b) <i>F</i> ²	c) F/2	d) F/4		
	it vectors along the incident	t ray, reflected ray and outv	vard normal to the reflecting		
surface, then	80 900 - 80 80	W 91 W	1 (c) (d) (d) (d) (d) (d) (d)		
a) $\vec{B} = \vec{A} - \vec{C}$	b) $\vec{B} = \vec{A} + (\vec{A} \cdot \vec{C})\vec{C}$	c) $\vec{B} = 2\vec{A} - \vec{C}$	d) $\vec{B} = \vec{A} - 2(\vec{A} \cdot \vec{C})\vec{C}$		
169. A stone of mass m is tie	ed to a string of length $\it l$ and	rotated in a circle with a co	onstant speed v. If the string		
is released, the stone fl	ies				
 a) Radially outwards 		b) Radially inwards			
c) Tangentially outwar	ds	d) With an acceleration	mv^2/l		
170. A particle is thrown wi	th a speed u at an angle $ heta$ w	ith the horizontal. When th	e particle makes an angle α		
with the horizontal, its	speed becomes v, whose va	lues is			
a) $u \cos \theta$	b) $u \cos \theta \cos \alpha$	c) $u \cos \theta \sec \alpha$	d) $u \sec \theta \cos \alpha$		
171. A bullet is fired horizor			d,		
a) It falls 9.8 m	9.8	c) It does not fall at all	d) It falls 4.9 m		
172. In a circus stuntman ric		r track of radius R in the ve	rtical plane. The minimum		
speed at highest point		· (===			
a) $\sqrt{2gR}$	b) 2 <i>gR</i>	c) $\sqrt{3gR}$	d) \sqrt{gR}		
173. A particle is moving in					
starting from $\theta = 0^{\circ}$, the respectively	e maximum and maximum	changes in the momentum	will occur, when value of θ is		
a) 45° and 90°	b) 90° and 180°	c) 180° and 360°	d) 90° and 270°		
174. An object is projected a					
height reached will be i	in and filter and all the second of the second of the second second second second second second second second		8-		
a) 1 : 2	b) 2:1	c) 1:4	d) 4:1		
			ion. At any time t' . If p is the		
	the vertical displacement, x				
	ot represent the variation o		J		
KE T	KE ↑	KE T	KE↑		
a)	b)	c)	d)		
$\longrightarrow y$	t	L	$\downarrow r \rightarrow p^2$		

- 176. A weightless thread can bear tension upto 37 N. A. stone of mass 500 g is tied to it and revolved in a circular path of radius 4 m in a vertical plane. If $g = 10 \text{ ms}^{-2}$, then the maximum angular velocity of the stone will
 - a) 2 rad s^{-1}
- b) 4 rad s^{-1}
- c) 8 rad s⁻¹
- d) 16 rad s⁻¹
- 177. A1 kg stone at the end of 1 m long string is whirled in a vertical circle at constant speed of 4 m/sec. The tension in the string is 6 N, when the stone is at $(g = 10 \text{ m/sec}^2)$
 - a) Top of the circle
- b) Bottom of the circle
- c) Half way down
- d) None of the above
- 178. A body is projected up a smooth inclined plane with a velocity v_0 from the point A as shown in figure. The angle of inclination is 45° and top B of the plane is connected to a well of diameter 40 m. If the body just manages to cross the well, what is the value of v_0 ? Length of the inclined plane is $20\sqrt{2}$ m, and g = 10ms⁻²

- a) 20 ms^{-1}
- b) $20\sqrt{2} \text{ms}^{-1}$
- c) 40 ms^{-1}
- d) $40\sqrt{2} \text{ ms}^{-1}$
- 179. A body moving along a circular path of radius R with velocity v, has centripetal accelerationa. If its velocity is made equal to 2v, then its centripetal acceleration is
 - a) 4a

b) 2a

- 180. In uniform circular motion
 - a) Both the angular velocity and the angular momentum vary
 - b) The angular velocity varies but the angular momentum remains constant
 - c) Both the angular velocity and the angular momentum stay constant
 - d) The angular momentum varies but the angular velocity remains constant
- 181. A toy cyclist completes one round of a square track of side 2 m in 40 s. What will be the displacement at the end of 3 min?
 - a) 52 m
- b) Zero
- c) 16 m
- d) $2\sqrt{2}$ m
- 182. The X and Y components of vector \vec{A} have numerical values 6 and 6 respectively and that of $(\vec{A} + \vec{B})$ have numerical values 10 and 9. What is the numerical value of \vec{B} ?

d) 5

- 183. If $\vec{P} = 2\hat{\imath} 3\hat{\jmath} + \hat{k}$ and $\vec{Q} = 3\hat{\imath} 2\hat{\jmath}$, then $\vec{P} \cdot \vec{Q}$ is
 - a) Zero
- b) 6

c) 12

- d) 15
- 184. If the equation for the displacement of a particle moving on a circular path is given by $(\theta) = 2t^3 + 0.5$, where θ is in radians and t in seconds, then the angular velocity of the particle after 2 sec from its start is
 - a) 8 rad/sec
- b) 12 rad/sec
- c) 24 rad/sec
- d) 36 rad/sec
- 185. Four persons K, L, M and N are initially at the corners of a square of side of length d. If every person starts moving, such that K is always headed towards L, L towards M, M is headed directly towards N and Ntowards K, then the four persons will meet after
- c) $\frac{d}{\sqrt{2n}}$ sec
- 186. An aeroplane is flying in a horizontal direction with a velocity 600kmh⁻¹ at a height of 1960 m. when it is vertically above the point A on the ground, a body is dropped from it. The body strikes the ground at point B. Calculate the distance AB.

a) 3.33 km b) 333 km	c) 33.3 km	d) 3330 km
187. A car round an unbanked curve of radius 92 n		
possible coefficient of static friction between		
a) 0.75 b) 0.60	c) 0.45	d) 0.30
188. A projectile is fired at an angle of 30° to the ho	orizontal such that the verti	cal component of its initial
velocity is 80 ms ⁻¹ . Its time of flight is T . Its v		
a) 200 ms^{-1} b) 300 ms^{-1}	c) 140 ms^{-1}	d) 100 ms^{-1}
189. A bomb is dropped from an aeroplane moving	g horizontally at constant sp	eed. When air resistance is taken
into consideration, the bomb		
a) Falls to earth exactly below the aeroplane	b) Fall to earth behi	ind the aeroplane
c) Falls to earth ahead of the aeroplane	d) Flies with the aer	roplane
190. A body is thrown with a velocity of $10~\text{ms}^{-1}$ a	t an angle of 60° with the ho	orizontal. Its velocity at the
highest point is		
a) 7 ms^{-1} b) 9 ms^{-1}	c) 18.7 ms^{-1}	d) 5 ms^{-1}
191. A bend in a level road has a radius of 80 m. Fir	nd the maximum speed whi	ch a car turning the bend may
have without skidding, if $\mu=0.25$		
a) 24 ms^{-1} b) 4 ms^{-1}	c) 14 ms^{-1}	d) 9.8 ms^{-1}
192. Two vectors \vec{a} and \vec{b} are at an angle of 60° wit	h each other. Their resultan	nt makes an angle of 45° with \vec{a} . If
$ \vec{b} = 2$ units, then $ \vec{a} $ is		
a) $\sqrt{3}$ b) $\sqrt{3} - 1$	c) $\sqrt{3} + 1$	d) $\sqrt{3}/2$
193. B		
Figure shows a body of mass m moving with a	a uniform speed v along a ci	rcle of radius r . The change in
velocity in going from A to B is		
	c) v	d) zero
194. A stone of mass 1 kg is tied to a string 4 m lon	g and is rotated at constant	speed of 40 ms ⁻¹ in a vertical
circle. The ratio of the tension at the top and t		
a) 11:12 b) 39:41	c) 41:39	d) 12:11
195. If the sum of the two unit vectors is also a unit		
a) $\sqrt{2}$ b) $\sqrt{3}$	c) √4	d) √7
196. Two stones are projected from the same spee	d but making different ange	els with the horizontal. Their
horizontal ranges are equal. The angle of proj		
102 m. Then maximum height reached by the		
a) 336 b) 224	c) 56	d) 34
197. A particle of a mass m is projected with velocity	ity v making an angle of 45°	with the horizontal. The
magnitude of the angular momentum of the p		
maximum height is (where $g =$ acceleration of		æ
a) Zero b) $mv^3/(4\sqrt{2}g)$	c) $mv^3/(\sqrt{2}g)$	d) $mv^2/2g$
198. A point P moves in counter-clockwise direction		

"P" is such that it sweeps out a length $s = t^3 + 5$, where s is in metres and t is in seconds. The radius of

the path is 20 m. The acceleration of "P" when t=2s is nearly

b) $13 \, m/s^2$

c) $12 \, m/s^2$

199. A man can thrown a stone 100 m away. The maximum height to which he can throw vertically is

b) 100 m

c) 50 m

200. In a loop-the-loop, a body starts at a height h = 2R. The minimum speed with which the body must be pushed down initially in order that it may be able to complete the vertical circle is

b) \sqrt{gR}

c) $\sqrt{3gR}$

201. A wheel making 20 revolution per second is in a horizontal circle with a uniform angular velocity. Let T be the tension in the string. If the length of the string is halved and its angular velocity is doubled, tension in the string will be

a) π rad s⁻²

b) $2 \pi \, \text{rad s}^{-2}$

c) $4 \, \pi \, \text{rad s}^{-2}$

d) $8 \, \pi \, \text{rad s}^{-2}$

202. For a particle in non-uniform accelerated circular motion

a) Velocity is radial and acceleration is transverse only

b) Velocity is transverse and acceleration is radial only

c) Velocity is radial and acceleration has both radial and transverse components

d) Velocity is transverse and acceleration has both radial and transverse components

203. A cricketer can throw a ball to a maximum horizontal distance of 100 m. With the same effort, he throws the ball vertically upwards. The maximum height attained by the ball is

a) 100 m

b) 80 m

d) 50 m

204. A particle is thrown above, the correct v - t graph will be

205. A can filled with water is revolved in a vertical of radius 4 m and the water does not fall down. The time period for a revaluation is about

a) 2 s

b) 4 s

c) 8 s

d) 10 s

206. After one second the velocity of a projectile makes an angle of 45° with the horizontal. After another one second it is travelling horizontally. The magnitude of its initial velocity and angle of projection are (g = 10 ms^{-2}

a) 14.02 ms^{-1} , $\tan^{-1}(2)$ b) 22.36 ms^{-1} , $\tan^{-1}(2)$ c) 14.62 ms^{-1} , 60°

d) 22.36 ms^{-1} , 60°

207. A bob of mass 10 kg is attached to wire 0.3 m long. Its breaking stress is $4.8 \times 10^7 N/m^2$. The area of cross section of the wire is $10^{-6}m^2$. The maximum angular velocity with which it can be rotated in a horizontal circle

a) 8 rad/sec

b) 4 rad/sec

c) 2 rad/sec

d) 1 rad/sec

208. When a ceiling fan is switched on, it makes 10 rotations in the first 4 s. How many rotations will it make in the next 4 s? (Assuming uniform angular acceleration)

a) 10

c) 40

d) 30

209. A stone tied to a string of length L is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has speed u. The magnitude of the change in its velocity as it reaches a position where the string is horizontal is

a) $\sqrt{u^2-2gL}$

b) $\sqrt{2gL}$

c) $\sqrt{u^2-gl}$

d) $\sqrt{2(u^2-gL)}$

210. A particle P is sliding down a frictionless hemispherical bowl. It passes the point A at t = 0. At this instant of time, the horizontal component of its velocity v. A bead Q of the same mass as P is ejected from A to t=

0 along the horizontal string AB (see figure) with the speed v. Friction between the bead and the string may be neglected. Let t_p and t_Q be the respective time taken by P and Q to reach the point B. Then

a) $t_p < t_0$

c) $t_p > t_Q$

d) All of these

b) $t_p = t_Q$ 211. The equation of trajectory of a projectile is $y = 10x - \left(\frac{5}{9}\right)x^2$. if we assume $g = 10\text{ms}^{-2}$, the range of projectile (in metre) is

a) 36

b) 24

c) 18

d) 9

212. A stone tied to the end of a string 1m long is whirled in a horizontal circle with a constant speed. If the stone makes 22 revolution in 44 seconds, what is the magnitude and direction of acceleration of the stone

a) $\pi^2/4 \, ms^{-2}$ and direction along the radius towards the centre

b) $\pi^2 m s^{-2}$ and direction along the radius away from the centre

c) $\pi^2 m s^{-2}$ and direction along the radius towards the centre

d) $\pi^2 m s^{-2}$ and direction along the tangent to the circle

213. A shell is fired from a cannon with a velocity v at angle θ with horizontal. At the highest point, it explodes into two pieces of equal mass. One of the pieces retraces its path to the cannon. The speed of the other piece just after explosion is

a) $3 v \cos \theta$

b) $2 v \cos \theta$

c) $\frac{3}{2}v\cos\theta$

d) $\frac{\sqrt{3}}{2}v\cos\theta$

214. A car runs at a constant speed on a circular track of radius 100 m, taking 62.8 s for every circular lap. The average velocity and average speed for each circular lap respectively is

b) $0, 10 \text{ ms}^{-1}$

c) 10 ms^{-1} , 10 ms^{-1}

d) 10 ms^{-1} , 0

215. An object moves along a straight line path from P to Q under the action of a force $(4\hat{\imath} - 3\hat{\jmath} + 3\hat{k})N$. If the coordinates of P and Q, in metres, are (3,3,-1) and (2,-1,4) respectively, then the work done by the force is

a) +23 J

b) $-23 \, J$

c) 1015 [

d) $\sqrt{35}(4\hat{i} - 3\hat{i} + 2\hat{k})$ I

216. Two forces, each equal to F, act as shown in figure. Their resultant is

b) F

c) $\sqrt{3} F$

d) $\sqrt{5} F$

217. A ball is projected from a certain point on the surface of a planet at a certain angel with the horizontal surface. The horizontal and vertical displacement x and y vary with time t in second as

 $x = 10\sqrt{3}t$ and $y = 10t - t^2$

The maximum height attained by the ball is

b) 75 m

c) 50 m

d) 25 m

218. The wheel of toy car rotates about axis. It slows down from 400 rps to 200 rps in 2s. Then its angular retardation in rads⁻² is

a) 200π

b) 100

c) 400π

d) None of these

219. If a_r and a_t represent radial and tangential accelerations, the motion of a particle will be uniformly circular if

a) $a_r = 0$ and $a_t = 0$

b) $a_r = 0$ but $a_t \neq 0$

c) $a_r \neq 0$ but $a_t = 0$

220. Two bodies are projected from ground with equal speeds 20 m/sec from the same position in same vertical plane to have equal range but at different angle above the horizontal. If one of the angle is 30° the sum of their maximum heights is (assume $g = 10m/s^2$)

a) 400 m 221. The horizontal projectile is	b) $20\ m$ range and the maximum height	c) $30 m$ of a projectile are equal. The	d) $40 m$ e angle of projection of the
a) $\theta = \tan^{-1}\left(\frac{1}{4}\right)$	b) $\theta = \tan^{-1}(4)$	c) $\theta = \tan^{-1}(2)$	d) $\theta = 45^{\circ}$
	th water is revolved in a vertical of revolution will be	al circle of radius $4 m$ and the	e water just does not fall down.
a) 1 sec	b) 10 sec	c) 8 sec	d) 4 sec
			$\vec{F} = (-2\hat{i} + 15\hat{j} + 6\hat{k})N \text{ done by}$
	ving the body through a distan		1 = (-21 + 13) + 0k) N dolle by
a) 190 J	b) 160 J	c) 150 J	d) 20 J
			the $x - y$ plane with a constant
11770	n the y-diretion. Its equation of		57 57
direction is	if the y-un etion. its equation of	y = px. Its veloc	ity component in the x-
a) Variable	-		F
uj variabie	b) $\sqrt{\frac{2\alpha}{\beta}}$	c) $\frac{\alpha}{2\beta}$	d) $\sqrt{\frac{\alpha}{2\beta}}$
	Vβ	у 2β	$\sqrt{2\beta}$
225. An aircraft is fly	ying at a height of 3400 m abov	e the ground. If the angle sul	otended at a ground observation
point by the air	craft position 10 s apart is 30°,	then the speed of the aircraf	t is
a) 19.63 ms^{-1}	b) 1963 ms^{-1}	c) 108 ms^{-1}	d) 196.3 ms^{-1}
226. Find the maxim	um velocity for skidding for a c	ar moved on a circular track	of radius 100 m. The
coefficient of fr	iction between the road and tyr	re is 0.2	
a) $0.14 m/s$	b) 140 m/s	c) 1.4 km/s	d) 14 m/s
227. A particle move	es along the parabolic path $y =$	ax^2 in such a way that the x	-component of the velocity
remains consta	nt, say c . The acceleration of the	e particle is	
a) <i>ac</i> k	b) 2ac ² ĵ	c) $ac^2\hat{\mathbf{k}}$	d) $a^2c\hat{j}$
228. A tennis ball ro	lls off the top of a stair case way	y with a horizontal velocity u	ms^{-1} . If the steps are b metre
wide and h met	re high, the ball will hit the edg	ϵ e of the n th step,	
if			82
a) $n = \frac{2hu}{}$	$b) n = \frac{2hu^2}{gb^2}$	c) $n = \frac{2hu^2}{}$	d) $n = \frac{hu^2}{hu^2}$
	velocity at the lowest point, so t	hat the string just slack at th	e highest point in a vertical
circle of radius		44	
a) \sqrt{gl}	b) $\sqrt{3gl}$	c) $\sqrt{5gl}$	d) $\sqrt{7gl}$
2.5	ving in a circle of radius R with	constant speed \emph{v} , if radius i	s double then its centripetal
	e same speed should be		
a) Doubled	b) Halved	c) Quadrupled	d) Unchanged
	irved road on national highway		m - 사람들은 사이에는 이 아이트를 잃고 있다면서 하다면서 사람들이 아이트 아이를 했다고 있다.
	n respect to inner edge so that a		
a) $\frac{v^2b}{Rg}$	b) $\frac{v}{Rab}$	c) $\frac{v^2R}{g}$	d) $\frac{v^2b}{R}$
	b		N.
	rm circular motion which of the	그리아 나타지는 아이는 아이는 아이를 가게 하는 것이 나를 보고 있다.	
a) Speed	b) Momentum	c) Kinetic energy	d) Mass
	t into air at some angle with the		
	ntal component of the velocity		st point of trajectory is
a) 40 ms ⁻¹		b) 0 ms ⁻¹	
c) 9.8 ms ⁻¹	1	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	ty of projection of the projectile
The real of the state of the st	lum is oscillating without damp	and the state of t	of the bob is less than
maximum, its a	cceleration vector \vec{a} is correctly	/ snown in	

- 235. An artillery piece which consistently shoots its shells with the same muzzle speed has a maximum range R. To hit a target which is $\frac{R}{2}$ from the gun and on the same level, the elevation angle of the gun should be
 - a) 15°

b) 45°

c) 30°

- d) 60°
- 236. The string of a pendulum of length l is displaced through 90° from the vertical and released. Then the minimum strength of the string in order to withstand the tension as the pendulum passes through the mean position is
 - a) mg

- b) 6 mg
- c) 3 mg
- d) 5 mg
- 237. A particle is moving with velocity $\vec{v} = K(y\hat{\imath} + x\hat{\jmath})$, where K is a constant. The general equation for its path
- a) $y^2 = x^2 + \text{constant}$ b) $y = x^2 + \text{constant}$ c) $y^2 = x + \text{constant}$
- d) xy = constant
- 238. A man is supported on a frictionless horizontal surface. It is attached to a string and rotates about a fixed centre at an angular velocity ω . The tension in the string if F. If the length of string and angular velocity are doubled, the tension is string is now

- b) F/2
- c) 4 F

- 239. A particle is projected from horizontal making an angle 60° with initial velocity 40ms⁻¹. The time taken by the particle to make angel 45° from horizontal, is
- b) 2.0 s
- c) 20 s
- 240. A small particle of mass m is projected at an angle θ with the x-axis with an initial velocity v_0 in the x-y plane as shown in the figure. At a time $t < \frac{v_0 \sin \theta}{g}$, the angular momentum of the particle is

Where \hat{i}, \hat{j} and \hat{k} are unit vectors along x, y and z-axis respectively.

- a) $\frac{1}{2}mgv_0t^2\cos\theta\,\hat{\imath}$
- b) $-mgv_0t^2\cos\theta \hat{j}$ c) $mgv_0t\cos\hat{k}$
- d) $-\frac{1}{2}mgv_0t^2\cos\theta\,\hat{k}$
- 241. A 500 kg car takes a round turn of radius 50 m with a velocity of 36 km h^{-1} . The centripetal force, is
 - a) 250 N
- b) 750 N
- c) 1000 N
- d) 1200 N
- 242. A 500 kg crane takes a turn of radius 50 m with velocity of 36 km/hr. The centripetal force is
 - a) 1200 N
- b) 1000 N
- c) 750 N
- d) 250 N
- 243. In the case of an oblique projectile, the velocity is perpendicular to acceleration
 - a) Once only
- b) Twice
- c) Thrice
- d) Four times

- 244. What is the angular velocity of earth
 - a) $\frac{2\pi}{86400}$ rad/sec b) $\frac{2\pi}{3600}$ rad/sec c) $\frac{2\pi}{24}$ rad/sec
- d) $\frac{2\pi}{6400}$ rad/sec
- 245. A stone projected with a velocity u at an angle θ with the horizontal reaches maximum height H_1 . When it is projected with velocity u at an angle $\left(\frac{\pi}{2} - \theta\right)$ with the horizontal, it reaches maximum height H_2 . The relation between the horizontal range R of the projectile, \mathcal{H}_1 and \mathcal{H}_2 is
 - a) $R = 4\sqrt{H_1 H_2}$
- b) $R = 4(H_1 H_2)$ c) $R = 4(H_1 + H_2)$ d) $R = \frac{H_1^2}{H^2}$

246	246. A large number of bullets are fired in all directions with same speed v . What is the maximum area on the				
	ground on which these bu	ıllets will spread			
	a) $\pi \frac{v^2}{a}$	b) $\pi \frac{v^4}{}$	c) $\pi^2 \frac{v^4}{g^2}$	d) $\pi^2 \frac{v^2}{}$	
	0	U	0	U	
247			T_f and the time to reach the		
	a) $T_f = 2t_m$	b) $T_f = t_m$	c) $T_f = \frac{t_m}{2}$	d) $T_f = \sqrt{2}(t_m)$	
248	. A long horizontal rod has	a bead which can slide alor	ng its length, and initially pl	aced at a distance L from	
			n about A with constant an		
			s μ , and gravity is neglected	d, then the time after which	
	the bead starts slipping is		1		
	a) $\sqrt{\frac{\mu}{\alpha}}$	b) $\frac{\mu}{\sqrt{\alpha}}$	c) $\frac{1}{\sqrt{\mu\alpha}}$	d) Infinitesimal	
240	Yu	U.▼. ₹.F.O	Y /	hoight h toughes the level	
249	(5)	1/7/	v, from the top of tower of er. A body of mass $2m$ thro		
	30.75 to 10 Maritime 54		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	20 March 1997	
	NOTES AND ADDRESS OF THE PARTY	tower of neight 4n will tou	ch the level ground at a dis	tance x from the foot of	
	tower. The value of x is	12.500	22.305	D F	
050	a) 250 m	b) 500 m	c) 125 m	d) 250√2 m	
250	23 23		vo vectors and are 6 and 6	3 respectively, then the	
	angle between two vecto		2.500	13.000	
254	a) 15°	b) 30°	c) 60°	d) 75°	
251	The same arranged to the same are	. 1.70	about its axis. Initially its a	. 5 7	
	The ratio of θ_2/θ_1 is	arough an angle θ_1 . In the n	ext 2 <i>sec</i> , it rotates through	n an additional angle θ_2 .	
	a) 1	b) 2	c) 3	d) 5	
252		200	00 g and displaces it from (840.	
202	$2\hat{j} + 7\hat{k}$) m. The work don		oog and displaces it from (01 + 3j - 3k) iii to (101	
	a) 21 J	b) 121 J	c) 361 J	d) 1000 J	
253			meter, at 30rev/min. A dist	The desired construction	
			e amplitude of the motion		
	frequency?		ő.		
	a) 0.4 m, 1.5 Hz	b) 0.4 m, 0.5 Hz	c) 0.8 m, 0.5 Hz	d) 0.2 m, 0.5 Hz	
254	. A body starts from rest fr	om the origin with an accel	eration of $6 m/s^2$ along the	ex -axis and $8m/s^2$ along	
	the y-axis. Its distance fro	m the origin after 4 second	ls will be		
	a) 56 m	b) 64 m	c) 80 m	d) 128 m	
255	. A car rounds an unbanked	d curve of radius 92 m with	out skidding at a speed of 2	26 ms^{-1} . The smallest	
]	tic friction between the tyre			
	a) 0.75	b) 0.60	c) 0.45	d) 0.30	
256			ed exactly one half of its ho	orizontal range. The	
		ne displacement time graph			
	a) Negative slope and zer		b) Zero slope and negative		
257	c) Zero slope and positive		d) positive slope and zero		
257			of the scalar product of the	CONTRACTOR OF THE CONTRACTOR O	
	a) 20	b) 23	c) 26	d) 5√33	
258	177	30-27	of a smooth hemispherical language $10 m/c$	1992 State	
	a) 0.2 m/s	b) 2 m/s	c) 4 m/s	d) $4.5 ms^{-1}$	
259	. The radio of angular spee	ds of minute hand and hou	r hand of a watch is		
	a) 1:12	b) 12:1	c) 6:1	d) 1:6	

260		hrown with speed in the ra orizontal, the angle of proj		e heights. If A is thrown at
	a) 0°	b) 60°	c) 30°	d) 45°
261	. A particle of mass m is pr	ojected with a velocity v m	aking an angle of 45° with	the horizontal. The
	1.E.C. (1.E.C.)	- A		on when the particle is at its
	a) $m\sqrt{2gh^3}$	b) $\frac{mv^3}{\sqrt{2}g}$	c) $\frac{mv^3}{4\sqrt{2}g}$	d) Zero
262	. A ball is projected with k	inetic energy E at an angle	of 45° to the horizontal. At	the highest point during its
	flight, its kinetic energy v			
	a) Zero	b) E/2	c) $E/\sqrt{2}$	d) <i>E</i>
263		he ground at a speed of 10 <i>1</i>		
200	시크림 경기에서 보면 하나 보고 있다. 그리고 말했다면 하다면 하는데 하는데 없는데 하는데 하다 하다.			the maximum height of the
				height of the second ball is
	a) 6.25m	b) 2.5m	c) 3.75m	d) 5m
264		gth l is connected to a part	cle of mass m and the othe	r to a small peg on a smooth
		rticle moves in a circle with		된 항상에 하는 그 사람들이 되었다면 있다면 한 사람들이 되었다면 하는 것이 되었다면 하는 사람들이 되었다면 하는 것이다.
	a) <i>T</i>	b) $T - \frac{mv^2}{l}$	mv^2	d) Zero
	SOCIETO AND	t .	ι	
265	. The trajectory of a projec	tile in vertical plane in $y =$	$ax - bx^2$, where a and b a	are constant and x and y are
	respectively horizontal a height attained by the pa	nd vertical distances of the rticle and the angle of proje	projectile from the point o ection from the horizontal a	f projection. The maximum are
	a) $\frac{b^2}{a^{-1}(b)}$	b) $\frac{a^2}{b}$, $\tan^{-1}(2b)$	a^2 tan-1(a)	d) $2a^2 + an^{-1}(a)$
	10	D .	10	D
266	· A force $\vec{F} = -K(y\hat{i} + x\hat{j})$	(where K is a positive cons	tant) acts on a particle mov	ring in the $x-y$ plane.
				int $(a, 0)$ and then parallel
	to the y-axis to the (a, a) .	The total work done by th	e force \vec{F} on the particle is	
				d) Ka^2
267		the upward direction making en the time after which its		horizontal direction with a
	a) 15 s	b) 10.98 s	c) 5.49 s	d) 2.745 s
268		axis and the vector $\hat{i} + \hat{j} + \hat{j}$		
	a) 30°	b) 45°	c) 60°	d) 90°
269	- Barrier			d linear velocity of the tip is
207	a) 0.2047 rad/sec., 0.03		b) 0.2547 rad/sec., 0.31	
	c) 0.1472 rad/sec., 0.065		d) 0.1047 rad/sec., 0.003	7.0
270		AS:	100 VA	its centripetal acceleration
2/0	3. TO	1776)		11.70
	a_c is varying with time t	as, $a_c = k^2 r t^2$, The power		
	a) $2\pi mk^2r^2t$	b) mk^2r^2t	c) $\frac{mk^4r^2t^5}{3}$	d) Zero
271	missile is	mum range with an initial	velocity of $20 m/s$. If $g =$	$10 m/s^2$, the range of the
	a) 20 m	b) 40 m	c) 50 m	d) 60 m
272	. A body of mass <i>m</i> tied to lowest point and the high	a string is moved in a verti lest point is	cal circle of radius <i>r</i> . The di	ifference in tensions at the
	a) 2 mg	b) 6 mg	c) 4 mg	d) 8 mg

273. A car runs at a consta	nt speed on a circular tra	ack of radius 100 m, tak	ing 62.8 seconds for every circular
loop. The average velo	ocity and average speed	for each circular loop re	espectively is
a) $10m/s$, $10m/s$	b) $10 m/s$,0	c) 0,0	d) $0.10 \ m/s$
274. A particle originally a	t rest at the highest poin	t of a smooth vertical ci	rcle is slightly displaced. It will leave
the circle at a vertical	distance h below the high	ghest point such that	
A TOTAL CONTRACTOR OF THE PARTY			

a) h = R

b) $h = \frac{R}{2}$

c) $h = \frac{R}{2}$

d) $h = \frac{2R}{3}$

275. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of angular momentum of projectile about the point of projection when the particle is at its maximum height h is

a) Zero

c) $\frac{mvh^2}{\sqrt{2}}$

d) None of these

276. A projectile is projected with velocity kv_e in vertically upward direction from the ground into the space (v_e is the escape velocity and k < 1). If air resistance is considered to be negligible then the maximum height from the center of earth to which it can go will be (R = radus of earth)

277. The tension in the string revolving in a vertical circle with a mass m at the end which is the lowest position

b) $\frac{mv^2}{r} - mg$

c) $\frac{mv^2}{r} + mg$

278. A particle is projected with a velocity v such that its range on the horizontal plane is twice the greatest height attained by it. The range of the projectile is (where g is acceleration due to gravity)

b) $\frac{4g}{5n^2}$

c) $\frac{v^2}{a}$

d) $\frac{4v^2}{\sqrt{5}a}$

279. The time period of the second's hand of a watch is

c) 12 h

d) 1 min

280. If the resultant of two forces (A + B) and (A - B) is $\sqrt{A^2 + B^2}$, then the angle between these forces is

a) $\cos^{-1} \left[-\frac{(A^2 - B^2)}{A^2 + B^2} \right]$

b) $\cos^{-1} \left[-\frac{(A^2 + B^2)}{(A^2 - B^2)} \right]$

c) $\cos^{-1} \left[-\frac{A^2 + B^2}{2(A^2 - B^2)} \right]$

d) $\cos^{-1} \left[-\frac{2(A^2 + B^2)}{A^2 - B^2} \right]$

281. A pendulum bob on a 2 m string is displaced 60° from the vertical and then released. What is the speed of the bob as it passes through the lowest point in its path

a) $\sqrt{2} m/s$

b) $\sqrt{9.8} \, m/s$

c) $4.43 \, m/s$

d) $1/\sqrt{2} m/s$

282. The angular velocity of a particle rotating in a circular orbit 100 times per minute is

a) 1.66 rad s^{-1}

b) 10.47 rad s^{-1}

c) 10.47 deg s^{-1}

d) 60 rad s^{-1}

283. An object is moving in a circle of radius 100 m with a constant speed of 31.4 m/s. What is its average speed for one complete revolution

a) Zero

b) $31.4 \, m/s$

c) $3.14 \, m/s$

d) $\sqrt{2} \times 31.4 \, m/s$

284. A stone is thrown at an angle θ to the horizontal reaches a maximum height H. Then the time of flight of stone will be

b) 2 $\frac{2H}{a}$

c) $\frac{2\sqrt{2H}\sin\theta}{a}$

d) $\frac{\sqrt{2H\sin\theta}}{q}$

1 6 / 6		other particle (B) is thrown	ili ilorizontai direction with			
speed of 5 <i>m/sec</i> from the same height. The correct statement is						
문화되었다. 이번에 2000년 1200년 1200	a) Both particles will reach at ground simultaneously					
	b) Both particles will reach at ground with same speed					
	c) Particle (A) will reach at ground first with respect to particle (B)					
52	each at ground first with i					
10 miles	e speed of 10 m/s takes a c	circular turn of radius 20 m. T	The magnitude of the acceleration			
of the car is						
		c) 0.25 ms^{-2}				
287. Ratio between maxi	mum range and square of	time of flight in projectile m	otion is			
a) 10:49	b) 49:10	c) 98:10	d) 10:98			
288. A ball is projected up	pwards from the top of tov	wer with a velocity 50 ms ⁻¹	making an angle 30° with the			
horizontal. The heig	ht of tower is 70m. After h	ow many seconds from the	instant of throwing will the ball			
reach the ground?						
a) 2 s	b) 5 s	c) 7 s	d) 9 s			
289. The horizontal range	e of an oblique projectile is	s equal to the distance throu	gh which a projectile has to fall			
freely from rest to a	cquire a velocity equal to t	the velocity of projection in 1	magnitude. The angle of			
projection is	ii (40) ii	250 th 15				
a) 75°	b) 60°	c) 45°	d) 30°			
	lowing statements is not c	orrect in uniform circular m	otion			
	particle remains constant		always points towards the centre			
c) The angular spee		d) The velocity rema				
15 N			the displacement when to takes			
seventh turn?	*		*			
a) 100 m	b) 200 m	c) $100\sqrt{3}$ m	d) $100\sqrt{3}$ m			
1 (30, #20) (M.79) (4 M.79)	with a constant speed alo		, 100 VO			
a) No work is done of		(A)	produced in the body			
aj no mornib done			produced in the body			
c) No force acts on t			ns constant			
c) No force acts on t	he body	d) Its velocity remain				
293. A particle of mass m	he body	d) Its velocity remain	ns constant $lpha$ dius r under the action of force			
293. A particle of mass <i>m F</i> . Its speed is	he body moves with constant spec	d) Its velocity remain ed along a circular path of ra	dius r under the action of force			
293. A particle of mass m F . Its speed is a) $\sqrt{Fr/m}$	he body moves with constant spec b) $\sqrt{F/r}$	d) Its velocity remained along a circular path of race) $\sqrt{F m r}$	dius r under the action of force d) $\sqrt{F/mr}$			
293. A particle of mass m F . Its speed is a) $\sqrt{Fr/m}$ 294. A body of mass $0.5 k$	he body moves with constant spectors $\sqrt{F/r}$ g is projected under grav	d) Its velocity remained along a circular path of racc) $\sqrt{F m r}$ ity with a speed of 98 m/s and	dius r under the action of force d) $\sqrt{F/mr}$			
293. A particle of mass m F . Its speed is a) $\sqrt{Fr/m}$ 294. A body of mass $0.5 k$ horizontal. The chan	he body moves with constant spectrum b) $\sqrt{F/r}$ and $\sqrt{F/r}$ are g is projected under gravage in momentum (in magnetic spectrum).	d) Its velocity remained along a circular path of racc) $\sqrt{F m r}$ ity with a speed of 98 m/s and initude) of the body is	dius r under the action of force d) $\sqrt{F/mr}$ t an angle of 30° with the			
293. A particle of mass m F . Its speed is a) $\sqrt{Fr/m}$ 294. A body of mass 0.5 k horizontal. The chana) 24.5 $N-s$	the body moves with constant specific projected under graving in momentum (in magnetic b) $49.0 N - s$	d) Its velocity remained along a circular path of racc) $\sqrt{F m r}$ ity with a speed of $98 m/s$ and initude) of the body is c) $98.0 N-s$	dius r under the action of force d) $\sqrt{F/mr}$ t an angle of 30° with the d) $50.0~N-s$			
293. A particle of mass m F . Its speed is a) $\sqrt{Fr/m}$ 294. A body of mass $0.5 k$ horizontal. The chan a) $24.5 N - s$ 295. A block of mass m at	the body moves with constant specific projected under graving in momentum (in magnetic b) $49.0 N - s$ the end of a string is white	d) Its velocity remained along a circular path of race c) $\sqrt{F m r}$ ity with a speed of 98 m/s and itude) of the body is c) 98.0 $N-s$ rled round in a vertical circle	dius r under the action of force $d) \sqrt{F/mr}$ t an angle of 30° with the $d) 50.0 N - s$ the of radius R . The critical speed			
293. A particle of mass m F . Its speed is a) $\sqrt{Fr/m}$ 294. A body of mass $0.5 k$ horizontal. The chan a) $24.5 N - s$ 295. A block of mass m at of the block at the to	the body b) $\sqrt{F/r}$ g is projected under gravinge in momentum (in magnet) 49.0 $N-s$ the end of a string is which positions is swing below which	d) Its velocity remained along a circular path of race c) $\sqrt{F m r}$ ity with a speed of 98 m/s anitude) of the body is c) 98.0 $N-s$ rled round in a vertical circle that the string would slacken be	dius r under the action of force $d) \sqrt{F/mr}$ t an angle of 30° with the $d) 50.0 N - s$ e of radius R . The critical speed efore the block reaches the top is			
293. A particle of mass m F . Its speed is a) $\sqrt{Fr/m}$ 294. A body of mass $0.5 \ k$ horizontal. The chan a) $24.5 \ N - s$ 295. A block of mass m at of the block at the to a) Rg	the body b) $\sqrt{F/r}$ ag is projected under gravinge in momentum (in magnet) $49.0 N - s$ the end of a string is which up of its swing below which b) $(Rg)^2$	d) Its velocity remained along a circular path of race c) $\sqrt{F m r}$ ity with a speed of 98 m/s and itude) of the body is c) 98.0 $N-s$ rled round in a vertical circle the string would slacken be c) R/g	dius r under the action of force d) $\sqrt{F/mr}$ t an angle of 30° with the d) $50.0~N-s$ to of radius R . The critical speed efore the block reaches the top is d) \sqrt{Rg}			
293. A particle of mass m F . Its speed is a) $\sqrt{Fr/m}$ 294. A body of mass $0.5 k$ horizontal. The chana) $24.5 N - s$ 295. A block of mass m at of the block at the to a) Rg 296. A body of mass 1 kg	the body b) $\sqrt{F/r}$ xg is projected under gravinge in momentum (in magnet) $49.0 N - s$ the end of a string is which poof its swing below which b) $(Rg)^2$ is rotating in a vertical circ	d) Its velocity remained along a circular path of race c) $\sqrt{F m r}$ ity with a speed of 98 m/s and itude) of the body is c) 98.0 $N-s$ ried round in a vertical circle the string would slacken b c) R/g cle of radius 1m. What will be	dius r under the action of force $d) \sqrt{F/mr}$ t an angle of 30° with the $d) 50.0 N - s$ e of radius R . The critical speed efore the block reaches the top is			
 293. A particle of mass m F. Its speed is a) √Fr/m 294. A body of mass 0.5 k horizontal. The chan a) 24.5 N − s 295. A block of mass m at of the block at the to a) Rg 296. A body of mass 1 kg energy at the top an 	he body b) $\sqrt{F/r}$ g is projected under gravinge in momentum (in magnet) $49.0 \ N-s$ the end of a string is which op of its swing below which b) $(Rg)^2$ is rotating in a vertical circle doubttom of the circle? (Take)	d) Its velocity remained along a circular path of race c) $\sqrt{F m r}$ ity with a speed of $98 m/s$ and itude) of the body is c) $98.0 N - s$ ried round in a vertical circle the string would slacken b c) R/g cle of radius 1m. What will hake $g = 10 \text{ ms}^{-2}$)	dius r under the action of force $d) \sqrt{F/mr}$ t an angle of 30° with the $d) 50.0 N - s$ e of radius R . The critical speed efore the block reaches the top is $d) \sqrt{Rg}$ be the difference in its kinetic			
293. A particle of mass m F . Its speed is a) $\sqrt{Fr/m}$ 294. A body of mass $0.5 k$ horizontal. The chan a) $24.5 N - s$ 295. A block of mass m at of the block at the to a) Rg 296. A body of mass 1 kg energy at the top and a) 10 J	he body b) $\sqrt{F/r}$ g is projected under gravinge in momentum (in magnetis) $49.0 N - s$ the end of a string is which by $(Rg)^2$ is rotating in a vertical circle doubt by $(Rg)^2$	d) Its velocity remained along a circular path of race of along a circular path of race of \sqrt{Fmr} ity with a speed of $98 m/s$ and itude) of the body is c) $98.0 N-s$ ried round in a vertical circle of the string would slacken be c) R/g cle of radius 1m. What will be take $g=10 \mathrm{ms}^{-2}$) c) $30 \mathrm{J}$	dius r under the action of force $d) \sqrt{F/mr}$ It an angle of 30° with the $d) 50.0 N - s$ It of radius R . The critical speed defore the block reaches the top is $d) \sqrt{Rg}$ The the difference in its kinetic $d) 50 J$			
 293. A particle of mass m F. Its speed is a) √Fr/m 294. A body of mass 0.5 k horizontal. The chan a) 24.5 N − s 295. A block of mass m at of the block at the to a) Rg 296. A body of mass 1 kg energy at the top and a) 10 J 297. Which of the following mass 1 kg to an and body of the block at the top and an and body of the following mass 1 kg to an and body of the following series where the following series where	b) $\sqrt{F/r}$ The gray is projected under gray age in momentum (in mage b) $49.0 \ N-s$ The end of a string is which appears to the end of a string is which b) $(Rg)^2$ The is rotating in a vertical circle distribution of the circle? (Tab) 20 J The magnitude of the gray is false for a string statements is false for a string in a statements is false for a string statements.	d) Its velocity remained along a circular path of race of along a circular path of race of \sqrt{Fmr} ity with a speed of $98 m/s$ and itude) of the body is c) $98.0 N-s$ ried round in a vertical circle of the string would slacken be c) R/g cle of radius 1m. What will be take $g=10 \mathrm{ms}^{-2}$) c) $30 \mathrm{J}$	dius r under the action of force $d) \sqrt{F/mr}$ t an angle of 30° with the $d) 50.0 N - s$ e of radius R . The critical speed efore the block reaches the top is $d) \sqrt{Rg}$ be the difference in its kinetic			
 293. A particle of mass m F. Its speed is a) √Fr/m 294. A body of mass 0.5 k horizontal. The chan a) 24.5 N − s 295. A block of mass m at of the block at the to a) Rg 296. A body of mass 1 kg energy at the top and a) 10 J 297. Which of the following The velocity vectors 	b) $\sqrt{F/r}$ The gray is projected under gray in momentum (in magnet) $49.0 N - s$ The end of a string is which is profits swing below which is $(Rg)^2$ is rotating in a vertical circle doubtoom of the circle? (Tab) 20 J The ing statements is false for a circle is tangent to the circle	d) Its velocity remained along a circular path of race of \sqrt{Fmr} ity with a speed of $98 m/s$ and itude) of the body is c) $98.0 N-s$ ried round in a vertical circle of the string would slacken be c) R/g cole of radius 1m. What will be take $g=10 \mathrm{ms}^{-2}$) c) $30 \mathrm{J}$ as particle moving in a circle of the string would slacken be considered as $10 \mathrm{ms}^{-2}$.	dius r under the action of force $d) \sqrt{F/mr}$ It an angle of 30° with the $d) 50.0 N - s$ It of radius R . The critical speed defore the block reaches the top is $d) \sqrt{Rg}$ The the difference in its kinetic $d) 50 J$			
293. A particle of mass m F. Its speed is a) √Fr/m 294. A body of mass 0.5 k horizontal. The chan a) 24.5 N − s 295. A block of mass m at of the block at the to a) Rg 296. A body of mass 1 kg energy at the top and a) 10 J 297. Which of the followin a) The velocity vector b) The acceleration of	b) $\sqrt{F/r}$ The end of a string is which pool of the circle? (Table 20 J) The end of the circle o	d) Its velocity remained along a circular path of race of along a circular path of race of \sqrt{Fmr} ity with a speed of $98 m/s$ and itude) of the body is c) $98.0 N-s$ ried round in a vertical circle of the string would slacken b c) R/g cole of radius 1m. What will bake $g=10 \text{ms}^{-2}$) c) 30J a particle moving in a circle of the string would slacken be also given by the string would slacken be also given by the string would slacken be also given by the string would slack will be also given by the string would slack with the string woul	dius r under the action of force $d) \sqrt{F/mr}$ It an angle of 30° with the $d) 50.0 N - s$ It of radius R . The critical speed defore the block reaches the top is $d) \sqrt{Rg}$ The the difference in its kinetic $d) 50 J$			
293. A particle of mass <i>m F</i> . Its speed is a) √ <i>Fr/m</i> 294. A body of mass 0.5 <i>k</i> horizontal. The chan a) 24.5 <i>N</i> − <i>s</i> 295. A block of mass <i>m</i> at of the block at the to a) <i>Rg</i> 296. A body of mass 1 kg energy at the top an a) 10 J 297. Which of the followi a) The velocity vector b) The acceleration of	b) $\sqrt{F/r}$ The gray is projected under gray age in momentum (in mage b) $49.0 \ N-s$ The end of a string is which appears is the end of a string is which b) $(Rg)^2$ The is rotating in a vertical circle b) $(Rg)^2$ The boundary is false for a boundary is tangent to the circle exector is tangent to the centre exector points to the centre exector points to the centre exector we constant and the constant is the contract of the centre exector points to the centre exector we constant in the constant is the contract of the centre exector points to the centre exector points to the centre exector is the constant in the constant is the constant in t	d) Its velocity remained along a circular path of race of along a circular path of race of $\sqrt{F m r}$ ity with a speed of $98 m/s$ and initude) of the body is c) $98.0 N-s$ reled round in a vertical circle of the string would slacken be c) R/g cole of radius 1m. What will be take $g=10 \mathrm{ms}^{-2}$) c) $30 \mathrm{J}$ a particle moving in a circle of the circle of the circle	dius r under the action of force $d) \sqrt{F/mr}$ It an angle of 30° with the $d) 50.0 N - s$ It of radius R . The critical speed defore the block reaches the top is $d) \sqrt{Rg}$ The the difference in its kinetic $d) 50 J$			
293. A particle of mass <i>m F</i> . Its speed is a) √ <i>Fr/m</i> 294. A body of mass 0.5 <i>k</i> horizontal. The chan a) 24.5 <i>N</i> − <i>s</i> 295. A block of mass <i>m</i> at of the block at the to a) <i>Rg</i> 296. A body of mass 1 kg energy at the top an a) 10 J 297. Which of the followi a) The velocity vector b) The acceleration of c) The acceleration of	b) $\sqrt{F/r}$ g is projected under gravage in momentum (in magnet) $49.0 \ N-s$ It the end of a string is which by $(Rg)^2$ is rotating in a vertical circle doubttom of the circle? (Tab) 20 J In gratements is false for a period of the circle wector is tangent to the circle vector points to the centre acceleration vectors are period of the contraction of the circle vector points to the centre acceleration vectors are period of the contraction of the contraction of the centre acceleration vectors are period of the contraction of the centre acceleration vectors are period of the contraction of the centre of t	d) Its velocity remained along a circular path of race of \sqrt{Fmr} ity with a speed of $98 m/s$ and initude) of the body is c) $98.0 N-s$ reled round in a vertical circle of the string would slacken be c) R/g cole of radius 1m. What will be also g = 10ms^{-2}) c) 30J a particle moving in a circle of the circle expendicular to each other	dius r under the action of force $d) \sqrt{F/mr}$ t an angle of 30° with the $d) 50.0 N - s$ e of radius R . The critical speed efore the block reaches the top is $d) \sqrt{Rg}$ be the difference in its kinetic $d) 50 J$ with a constant angular speed			
 293. A particle of mass m F. Its speed is a) √Fr/m 294. A body of mass 0.5 k horizontal. The chan a) 24.5 N − s 295. A block of mass m at of the block at the to a) Rg 296. A body of mass 1 kg energy at the top and a) 10 J 297. Which of the following a) The velocity vector b) The acceleration of the colority and a color of the velocity and a color of the velocity and a color of the velocity and a color of the color of the velocity and a color of the color of the velocity and a color of the v	b) $\sqrt{F/r}$ The gray is projected under graving in momentum (in magnet) $49.0 N - s$ The end of a string is which the end of a string is which the end of a string is which the circle $(Rg)^2$ The is rotating in a vertical circle by $(Rg)^2$ The is rotating in a vertical circle by $(Rg)^2$ The is rotating in a vertical circle by $(Rg)^2$ The is rotating in a vertical circle by $(Rg)^2$ The is rotating in a vertical circle by $(Rg)^2$ The interpretation of the circle vector is tangent to the circle vector points to the centre acceleration vectors are perfectly $(Rg)^2$	d) Its velocity remained along a circular path of race along a circular path of race $c) \sqrt{F m r}$ ity with a speed of $98 m/s$ and itude) of the body is $c) 98.0 N - s$ ried round in a vertical circle in the string would slacken be $c) R/g$ cle of radius 1m. What will be take $g = 10 \text{ ms}^{-2}$) $c) 30 \text{ J}$ a particle moving in a circle of the circle expendicular to each other ang throws a ball with a speed	dius r under the action of force $d) \sqrt{F/mr}$ It an angle of 30° with the $d) 50.0 N - s$ The of radius R . The critical speed efore the block reaches the top is $d) \sqrt{Rg}$ The the difference in its kinetic $d) 50 J$ With a constant angular speed			
 293. A particle of mass m F. Its speed is a) √Fr/m 294. A body of mass 0.5 k horizontal. The chana) 24.5 N − s 295. A block of mass m at of the block at the total Rg 296. A body of mass 1 kg energy at the top anal 10 J 297. Which of the following a) The velocity vector b) The acceleration of the colority and a color of the playing on the with the horizontal. 	b) $\sqrt{F/r}$ (g) is projected under gravage in momentum (in maginary) b) (g) is rotating in a vertical circle b) (g) is rotating in a vertical circle b) (g) is rotating in a vertical circle b) (g) in gravatements is false for a corresponding to the circle vector is tangent to the circle vector points to the centre acceleration vectors are performed by a form of a 10 m high building those where the corresponding to the throwing the solution of the control of a 10 m high building those where the corresponding to the throwing the solution of the control of a 10 m high building those solutions are provided in the control of a 10 m high building those solutions are provided in the control of a 10 m high building the control of a 10 m	d) Its velocity remained along a circular path of race along a circular path of race c) $\sqrt{F m r}$ ity with a speed of $98 m/s$ and initude) of the body is c) $98.0 N-s$ ried round in a vertical circle in the string would slacken be c) R/g cole of radius 1m. What will be along R/g aparticle moving in a circle of the circle expendicular to each other ang throws a ball with a speed gooint will the ball be at the	dius r under the action of force $d) \sqrt{F/mr}$ It an angle of 30° with the $d) 50.0 N - s$ It of radius R . The critical speed defore the block reaches the top is $d) \sqrt{Rg}$ The the difference in its kinetic $d) 50 J$ With a constant angular speed			
 293. A particle of mass m F. Its speed is a) √Fr/m 294. A body of mass 0.5 k horizontal. The chan a) 24.5 N − s 295. A block of mass m at of the block at the to a) Rg 296. A body of mass 1 kg energy at the top an a) 10 J 297. Which of the followinal the velocity vector b) The acceleration of the colority and a coloring on the with the horizontal. ground? [g = 10ms for the coloring color	b) $\sqrt{F/r}$ The end of a string is white $(x,y)^2$ is rotating in a vertical circle by $(x,y)^2$ is rotating in	d) Its velocity remained along a circular path of race along a circular path of race $c) \sqrt{F m r}$ ity with a speed of $98 m/s$ and itude) of the body is $c) 98.0 N - s$ ried round in a vertical circle in the string would slacken be $c) R/g$ cole of radius 1m. What will be take $g = 10 \text{ ms}^{-2}$) $c) 30 \text{ J}$ a particle moving in a circle of the circle expendicular to each other ang throws a ball with a speed g point will the ball be at the $s = \sqrt{3}/2$	dius r under the action of force $d) \sqrt{F/mr}$ It an angle of 30° with the $d) 50.0 N - s$ It of radius R . The critical speed efore the block reaches the top is $d) \sqrt{Rg}$ The tritical speed efore the difference in its kinetic $d) 50 J$ With a constant angular speed $d \text{ of } 10 \text{ ms}^{-1} \text{ at an angle of } 30^{\circ} \text{ the light of } 10 \text{ m from the}$			
 293. A particle of mass m F. Its speed is a) √Fr/m 294. A body of mass 0.5 k horizontal. The chana) 24.5 N − s 295. A block of mass m at of the block at the total Rg 296. A body of mass 1 kg energy at the top anal 10 J 297. Which of the following a) The velocity vector b) The acceleration of the colority and a color of the playing on the with the horizontal. 	b) $\sqrt{F/r}$ (g) is projected under gravage in momentum (in maginary) b) (g) is rotating in a vertical circle b) (g) is rotating in a vertical circle b) (g) is rotating in a vertical circle b) (g) in gravatements is false for a corresponding to the circle vector is tangent to the circle vector points to the centre acceleration vectors are performed by a form of a 10 m high building those where the corresponding to the throwing the solution of the control of a 10 m high building those where the corresponding to the throwing the solution of the control of a 10 m high building those solutions are provided in the control of a 10 m high building those solutions are provided in the control of a 10 m high building the control of a 10 m	d) Its velocity remained along a circular path of race along a circular path of race c) $\sqrt{F m r}$ ity with a speed of $98 m/s$ and initude) of the body is c) $98.0 N-s$ ried round in a vertical circle in the string would slacken be c) R/g cole of radius 1m. What will be along R/g aparticle moving in a circle of the circle expendicular to each other ang throws a ball with a speed gooint will the ball be at the	dius r under the action of force $d) \sqrt{F/mr}$ It an angle of 30° with the $d) 50.0 N - s$ The of radius R . The critical speed efore the block reaches the top is $d) \sqrt{Rg}$ The the difference in its kinetic $d) 50 J$ With a constant angular speed			
 293. A particle of mass m F. Its speed is a) √Fr/m 294. A body of mass 0.5 k horizontal. The chan a) 24.5 N − s 295. A block of mass m at of the block at the to a) Rg 296. A body of mass 1 kg energy at the top an a) 10 J 297. Which of the followinal the velocity vector b) The acceleration of the colority and a coloring on the with the horizontal. ground? [g = 10ms for the coloring color	b) $\sqrt{F/r}$ The end of a string is white $(x,y)^2$ is rotating in a vertical circle by $(x,y)^2$ is rotating in	d) Its velocity remained along a circular path of race along a circular path of race $c) \sqrt{F m r}$ ity with a speed of $98 m/s$ and itude) of the body is $c) 98.0 N - s$ ried round in a vertical circle in the string would slacken be $c) R/g$ cole of radius 1m. What will be take $g = 10 \text{ ms}^{-2}$) $c) 30 \text{ J}$ a particle moving in a circle of the circle expendicular to each other ang throws a ball with a speed g point will the ball be at the $s = \sqrt{3}/2$	dius r under the action of force $d) \sqrt{F/mr}$ It an angle of 30° with the $d) 50.0 N - s$ It of radius R . The critical speed efore the block reaches the top is $d) \sqrt{Rg}$ The tritical speed efore the difference in its kinetic $d) 50 J$ With a constant angular speed $d \text{ of } 10 \text{ ms}^{-1} \text{ at an angle of } 30^{\circ} \text{ the light of } 10 \text{ m from the}$			

- 299. A particle is projected with a speed v at 45° with the horizontal. The magnitude of angular momentum of the projectile about the point of projection when the particle is at its maximum height h is

- 300. A motor cyclist moving with a velocity of 72 km/hour on a flat road takes a turn on the road at a point where the radius of curvature of the road is 20 m. The acceleration due to gravity is 10 m/sec^2 . In order to avoid skidding, he must not bend with respect to the vertical plane by an angle greater than
 - a) $\theta = \tan^{-1} \theta$
- b) $\theta = \tan^{-1} 2$
- c) $\theta = \tan^{-1} 25.92$
- 301. A particle A is projected from the ground with an initial velocity of 10 ms⁻¹at an angle of 60° with horizontal. From what height h should an another particle B be projected horizontally with velocity 5ms^{-1} so that both the particles collide in ground at point C if both are projected simultaneously? ($g = 10 \text{ ms}^{-2}$)

- a) 10 m
- b) 30 m
- c) 15 m
- d) 25 m
- 302. A cannon on a level plane is aimed at an angle θ above the horizontal and a shell is fired with a muzzle velocity v_0 towards a vertical cliff a distance D away. Then the height from the bottom at which the shell strikes the side walls of the cliff is
 - a) $D \sin \theta \frac{gD^2}{2v_0^2 \sin^2 \theta}$ b) $D \cos \theta \frac{gD^2}{2v_0^2 \cos^2 \theta}$ c) $D \tan \theta \frac{gD^2}{2v_0^2 \cos^2 \theta}$ d) $D \tan \theta \frac{gD^2}{2v_0^2 \sin^2 \theta}$

- 303. Two stones are projected with the same velocity in magnitude but making different angles with the horizontal. Their ranges are equal. If the angel of projection of one is $\pi/3$ and its maximum height is y_1 , the maximum height of the other will be
 - a) $3y_1$

b) $2y_1$

- 304. Two stones thrown at different angles have same initial velocity and same range. If H is the maximum height attained by one stone thrown at an angle of 30°, then the maximum height attained by the other stone is

b) H

c) 2H

- d) 3H
- 305. Two wires AC and BC are tied at C of small sphere of mass 5 kg, which revolves at a constant speed v in the horizontal circle of radius 1.6 m. The minimum value of v is

- a) $3.01 \, \text{ms}^{-1}$
- b) 4.01 ms⁻¹ c) 8.2 ms⁻¹
- 306. If the resultant of the vectors $(\hat{i} + 2\hat{j} \hat{k})$, $(\hat{i} \hat{j} + 2\hat{k})$ and \vec{C} is a unit vector along the y-direction, then \vec{C} is
 - a) $-2\hat{i} \hat{k}$
- b) $-2\hat{i} + \hat{k}$
- c) $2\hat{i} \hat{k}$
- 307. Which of the following statements is false for a particle moving in a circle with a constant angular speed?
 - a) The velocity vector is tangent to the circle
 - b) The acceleration vector is tangent to the circle

	c) The acceleration vector	point to the center of the	circle		
	d) The velocity and accele	ration vectors are perpen-	dicular to each other		
308.	308. The horizontal range of a projectile $4\sqrt{3}$ times the maximum height achieved by it, then the angle of				
	projection is				
	a) 30°	b) 45°	c) 60°	d) 90°	
309.	An object is moving in a ci	rcle of radius 100 m with	a constant speed of 31.4 m	s ⁻¹ . What is its average	
	speed for one complete re	volution?			
	a) Zero	b) 31.4 ms^{-1}	c) 3.14 ms^{-1}	d) $\sqrt{2} \times 31.4 \text{ ms}^{-1}$	
310.	A particle of mass m move	es with constant speed alo	ng a circular path of radius	r under the action of a	
	force E Its speed is		•		
	a) $\sqrt{\frac{rF}{m}}$	\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{		T _E	
	a) $\frac{rr}{}$	b) $\sqrt{\frac{F}{r}}$	c) \sqrt{Fmr}	d) $\sqrt{\frac{F}{mr}}$	
		V		Y	
311.				horizontal direction with a	
			clination with the horizont		
	a) 15 s	b) 10.98 s	c) 5.49 s	d) 2.745 s	
312.			any time t is given by $x =$		
			t the moving particle from	the following	
	a) The acceleration of the	Barther designant community and contract the contract of the c			
	b) The velocity of the part				
	c) The velocity of the par				
	d) The velocity and accele				
313.			45°. The maximum safe spe	eed of a car having mass	
	2000 kg will be, if the coe		n tyre and road is 0.5		
	a) 172 m/s	b) 124 m/s	c) 99 m/s	d) 86 m/s	
314.	A particle of mass m is mo	oving in a horizontal circle	of radius r , under a centrip	oetal force	
	$=\frac{k}{r^{2'}}$ where k is a constant	nt.			
	a) The potential energy of				
	b) The potential energy of	the particle is $\frac{k}{r}$			
	c) The total energy of the				
	d) The Kinetic energy of th	ne particle is $-\frac{k}{r}$			
315.	A ball is thrown up at an a	ngle with the horizontal. 1	Then the total change of mo	omentum by the instant it	
	returns to ground is				
	a) Acceleration due to gra	vity × total time of flight			
	b) Weight of the ball × ha	lf the time of flight			
	c) Weight of the ball × to	tal time of flight			
	d) Weight of the ball × ho	rizontal range			
316.	Two masses M and m are	attached to a vertical axis	by weightless threads of co	ombined length $\it l$. They are	
	set in rotational motion in	a horizontal plane about	this axis with constant ang	ular velocity ω . If the	
		e the same during motion,	the distance of \boldsymbol{M} from the	axis is	
	a) $\frac{Ml}{M+m}$	b) $\frac{ml}{M+m}$	c) $\frac{M+m}{l}$	d) $\frac{M+m}{m}l$	
				TIL .	
317.	The length of second's har	nd in a watch is 1 cm. The	change in velocity of its tip	in 15 seconds is	

minute. Keeping the radius constant, the tension in the string is double. The new speed is nearly

318. A mass of 2 kg is whirle'd in a horizontal circle by means of a string at an initial speed of 5 revolutions per

b) $\frac{\pi}{30\sqrt{2}}$ cm/sec c) $\frac{\pi}{30}$ cm/sec d) $\frac{\pi\sqrt{2}}{30}$ cm/sec

a) Zero

a) 2.25 rpm	b) 7 rpm	c) 10 rpm	d) 14 rpm
319. Consider a vector F	$\dot{s} = 4\hat{\imath} - 3\hat{\jmath}$. Another vector t	that is perpendicular to \vec{F} is	3
a) 4î + 3ĵ	b) 6ĵ	c) 7ĵ	d) 3î – 4ĵ
		een the tyres and the road,	, when a car travelling at 60
	vel turn of radius 40 m?		
a) 0.5	b) 0.66	c) 0.71	d) 0.80
	if the centripetal force F is loriginal radius R) will be	kept constant but the angu	lar velocity is doubled, the new
a) 2R	b) R/2	c) R/4	d) 4R
			The wire is most likely to break
: (CONTROL OF CONTROL		circle h) When the mass i	s the lowest point of the circle
c) When the wire is	요요한 용면 보다는 시간을 하는 것을 하는 것이 되어 보고 있다면 해가 있다. 그 보고 있는 것은 것이 되어 보다 보고 있다면 하는 것이 없었다. 그렇지 않는 것이 없는 것이 없다. 1	At an angle of co	s^{-1} (1/3) from the upward
		d) vertical	See Proce Processing assured to the Contraction
323. A string of length L	is fixed at one end and the	string makes $\frac{2}{2}$ rev/s arour	nd the vertical axis through, the
	in the figure, then tension		
fixed alld as shown	in the figure, then tension	in the string is	
-3/			
$\theta \setminus \setminus_L$			
7			
(1 9			
-R-			
a) <i>ML</i>	b) 2 <i>ML</i>	c) 4 ML	d) 16 <i>ML</i>
			tal. It just crosses the tops of two
	nt h, after 1s and 3s respecti	7	
a) 1 s	b) 3 s	c) 4 s	d) 7.8 s
7.5	has a radius of 60m. The n	7	
coefficient of static			
a) $2.1 m/s$	b) 14 m/s	c) 21 m/s	d) 7 <i>m/s</i>
326. A particle is movin	g along a circular path with	a uniform speed. How doe	s its angular velocity change
when it completes	half of the circular path?		
		c) Decreases	d) Cannot say
327. Roads are banked			
	hicles may not fall outward		
-	rce between the road and v	ehicle may be decreased	
(8)	ar of tyres may be avoided		
	e vehicle may be decreased		ay on a level ground. If $g =$
10 ms^{-2} , the gun s		to fit a target 200 m aw	ay on a level ground. If $g =$
a) Directly at the ta		b) 5 cm below the t	arget
c) 5 cm above the t		d) 2 cm above the t	
	-		at an angle $\theta = 30^{\circ}$ with plane.
	its velocity perpendicular to		
a) $10\sqrt{3} \text{ ms}^{-1}$	no reserve perpendicular a	b) 10 ms ⁻¹	F
c) $5\sqrt{3} \text{ ms}^{-1}$		d) Data is insufficie	nt
	from the ground with velo	5511 cm - 1200 2000	30°. It crosses a wall after 3 sec.
And the second s	e wall the stone will strike t		
a) 90.2 m	b) 89.6 m	c) $86.6 m$	d) 70.2 m
	s in a circular path, no worl		1.5
	cement are perpendicular o		
,	en marantario Esta Establishe		

c) there is no displacement

- d) there is no net force
- 332. The angle of banking is independent of
 - a) speed of vehicle

b) radius of curvature of road

c) height of inclination

- d) None of the above
- 333. A ball of mass 0.1 kg. Is whirled in a horizontal circle of radius 1 m. By means of a string at an initial speed of 10 R. P. M. Keeping the radius constant, the tension in the string is reduced to one quarter of its initial value. The new speed is
 - a) 5r.p.m.
- b) 10 r.p.m.
- c) $20 \, r. \, p. \, m.$
- d) 14 r.p.m.
- 334. A gun is aimed at a target in a line of its barrel. The target is released and allowed to fall under gravity at the same instant the gun is fired. The bullet will
 - a) Pass above the target

b) Pass below the target

c) Hit the target

- d) Certainly miss the target
- 335. A batsman hits a sixer and the ball touches the ground outside the cricket ground. Which of the following graph describes the variation of the cricket ball's vertical velocity v with time between the time t_1 as it hits the bat and time t_2 when it touches the ground

- 336. A body moves with constant angular velocity on a circle. Magnitude of angular acceleration
 - a) $r\omega^2$

- b) Constant
- c) Zero
- d) None of the above
- 337. For a particle in uniform circular motion the acceleration **a** at a point $P(R, \theta)$ on the circle of the radius R is (here θ is measured from the x –axis)

a)
$$-\frac{v^2}{R}\cos\theta\,\hat{\mathbf{i}} + \frac{v^2}{R}\sin\theta\,\hat{\mathbf{j}}$$

b)
$$-\frac{v^2}{R}\sin\theta \,\hat{\mathbf{i}} + \frac{v^2}{R}\cos\theta \,\hat{\mathbf{j}}$$

c)
$$-\frac{v^2}{R}\cos\theta\,\hat{\mathbf{i}} - \frac{v^2}{R}\sin\theta\,\hat{\mathbf{j}}$$

d)
$$-\frac{v^2}{R}$$
 $\hat{\mathbf{i}} + \frac{v^2}{R}$ $\hat{\mathbf{j}}$

338. A body is projected at an angle θ with respect to horizontal direction with velocity u. The maximum range of the body is

a)
$$R = \frac{u^2 \sin 2\theta}{a}$$

b)
$$R = \frac{u^2 \sin^2 \theta}{2a}$$
 c) $R = \frac{u^2}{a}$

c)
$$R = \frac{u^2}{g}$$

d)
$$R = u^2 \sin \theta$$

339. A particle is projected with certain velocity at two different angels of projections with respect to horizontal plane so as to have same range R on a horizontal plane. If t_1 and t_2 are the time taken for the two paths, the which one of the following relations is correct?

a)
$$t_1 t_2 = \frac{2R}{g}$$

$$b) t_1 t_2 = \frac{R}{g}$$

$$c) t_1 t_2 = \frac{R}{2g}$$

c)
$$t_1 t_2 = \frac{R}{2g}$$
 d) $t_1 t_2 = \frac{4R}{g}$

- 340. A particle is moving on a circular path with constant speed, then its acceleration will be
 - a) Zero

b) External radial acceleration

c) Internal radial acceleration

- d) Constant acceleration
- 341. From an inclined plane two particles are projected with same speed at same angle θ , one up and other down the plane as shown in figure. Which of the following statements (s) is/are correct?

- a) The time of flight of each particle is the same.
- b) The particles will collide the plane with same speed
- c) Both the particles strike the plane perpendicularly

- d) The particles will collide in mid air if projected simultaneously and time of flight of each particle is less than the time of collision
- 342. Consider a disc rotating in the horizontal plane with a constant angular speed ω about its centre O. The disc has a shaded region on one side of the diameter and an unshanded region on the other side as shown in the figure. When the disc is in the orientation as shown, two pebbles P and Q are simultaneously projected at an angle towards R. The velocity of projection is in the y-z plane and is same for both pebbles with respect to the disc. Assume that (i) they land back on the disc before the disc has completed $\frac{1}{6}$ rotation. (ii) their range is less than half the disc radius, and (iii) ω remains constant throughout. Then

- a) P lands in the shaded region and Q in the unshaded region
- b) P lands in the unshaded region and Q in the shaded region
- c) Both P and Q land in the unshaded region
- d) Both P and Q land in the shaded region
- 343. An airplane, diving at an angle of 53.0° with the vertical releases a projectile at an altitude of 730 m. The projectile hits the ground 5.00 s after being released. What is the speed of the aircraft?
 - a) 282 ms^{-1}
- b) 202 ms⁻¹
- c) 182 ms^{-1}
- d) 102 ms^{-1}

- 344. In a projectile motion, velocity at maximum height is
- b) $u\cos\theta$
- c) $\frac{u\sin\theta}{2}$
- d) None of these
- 345. A small cone filled with water is revolved in a vertical circle of radius 4 m and the water does not fall down. What must be the maximum period of revolution?

- b) 2 s

d) 6 s

- 346. If $0.5\hat{i} + 0.8\hat{j} + c\hat{k}$ is a unit vector, then the value of c is
 - a) $\sqrt{0.11}$
- b) $\sqrt{0.22}$
- c) $\sqrt{0.33}$
- d) $\sqrt{0.89}$
- 347. If a cyclist moving with a speed of 4.9 m/s on a level road can take a sharp circular turn of radius 4 m, then coefficient of friction between the cycle tyres and road is

- b) 0.51
- c) 0.61
- d) 0.71
- 348. Given that $\vec{A} + \vec{B} + \vec{C} = 0$. Out of three vectors, two are equal in magnitude and the magnitude of third vector is $\sqrt{2}$ times that of either of the two having equal magnitude. Then the angles between vectors are given by
 - a) 45°, 45°, 90°
- b) 90°, 135°, 135°
- c) 30°, 60°, 90°
- d) 45°, 60°, 90°
- 349. A mass of 2 kg is whirled in a horizontal circle by means of a string at an initial speed of 5 revolutions per minute. Keeping the radius constant the tension in the string is doubled. The new speed is nearly
 - a) 14 rpm
- b) 10 rpm
- c) 2.25 rpm
- 350. For a given velocity, a projectile has the same range R for two angles of projection if t_1 and t_2 are the times of flight in the two cases then
 - a) $t_1 t_2 \propto R^2$
- b) $t_1 t_2 \propto R$
- c) $t_1 t_2 \propto \frac{1}{R}$
- d) $t_1 t_2 \propto \frac{1}{R^2}$
- 351. A particle of mass m is executing uniform circular motion on a path of radius r. If p is the magnitude of its linear momentum. The radial force acting on the particle is
 - a) pmr
- c) $\frac{mp^2}{r}$
- 352. A stone tied to a string of length L is whirled in a vertical circle, with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position, and has a speed u. The magnitude of change in its velocity as it reaches a position, where the string is horizontal is

a) $\sqrt{u^2 - 2 g L}$	b) $\sqrt{2 \text{ g } L}$	c) $\sqrt{u^2 - gL}$	d) $\sqrt{2(u^2-gL)}$
353. What is the angular vel-	ocity of earth?		
a) $\frac{2\pi}{86400}$ rad s ⁻¹	b) $\frac{2\pi}{3600}$ rad s ⁻¹	c) $\frac{2\pi}{24}$ rad s ⁻¹ l	d) $\frac{2\pi}{6400}$ rad s ⁻¹
354. A body of mass m hang	s at one end of a string of le	ength <i>l</i> , the other end of wh	ich is fixed. It is given a
horizontal velocity so the	hat the string would just re	ach where it makes an ang	le of 60° with the vertical. The
tension in the string at	mean position is		
a) 2 <i>mg</i>	b) <i>mg</i>	c) 3mg	d) $\sqrt{3}mg$
355. When a body moves in	a circular path, no work is o	done by the force since,	<u> </u>
a) There is no displace	ment		
b) There is no net force			
c) Force and displacem	ent are perpendicular to ea	ich other	
d) The force is always a			
356. Two bodies are project			
0	ne whose inclination isβ. If	∝ be the angle of projectio	n of the first body with the
horizontal the ratio of t		cos ×	0)
a) $\frac{\cos \alpha}{\sin(\alpha + \alpha)}$	b) $\frac{\sin(\alpha + \beta)}{\cos \alpha}$	c) $\frac{\cos \alpha}{\sin(\alpha c - \alpha)}$	d) $\frac{\sin(\alpha - \beta)}{\beta}$
357. Given $\vec{A} = \hat{i} + 2\hat{j} - 3\hat{k}$.			
	150 SSV	c) $-\hat{i} + 3\hat{k}$	d) 2ĵ – 3k̂
358. What is the angle between		3 10	D. V
a) 0°	b) π/6	30.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d) None of these
	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩		constant speed. What should
position (Take $g = 10r$)		bucket does not spin, wher	the bucket is at the highest
a) $4 m/sec$		c) 16 m/sec	d) None of the above
			cceleration then, which of the
following is true?	ation, w is ungular velocity	and a is the centripetal a	ecciciation then, which of the
	b) $\alpha = \frac{v}{\omega a}$	va va	a a
361. A particle leaves the or			
	. When the particle reaches	it maximum <i>x-</i> coordinate,	what is its y-component a
velocity?			1
a) -2.0 ms ⁻¹	b) -1.0 ms ⁻¹	c) -1.5 ms^{-1}	d) 1.0 ms ⁻¹
		ors $2\hat{\imath} - \hat{\jmath} + 3k$ and $3\hat{\imath} - 2\hat{\jmath}$	 2k so that the resultant is a
unit vector along Z-axis		2 04 · =C	n or of
a) $5\hat{i} + \hat{k}$		c) 3ĵ + 5k	$d) -3\hat{j} + 2\hat{k}$
363. A long horizontal rod h			MT
	HONO 아니라 10 10 10 10 10 10 10 10 10 10 10 10 10		t of friction, between the rod
a managed by the control of the cont	ravity is neglected, then the		
a) $\sqrt{\mu/\alpha}$	b) μ/√α	 c) 1/√μα 	d) Infinitesimal
364. A particle moves in a ci		n of a central attractive for	ce inversely proportional to
the distance r' . The spe) D	1) D
1070 E		c) Proportional to r	
365. A cricket ball is hit at 30	o with the norizontal with	kinetric energy E_k , what is	the kinetic energy at the
highest point?	b) 2E //	a) F /A	d) Zero
a) $E_k/2$ 366. The speed of a projectil	b) $3E_k/4$	c) $E_k/4$	
a) 60°	b) 15°	c) 30°	d) 45°
a) 00	0) 10	c) 50	uj 15

367. Three balls are dropped from the top of a building with equal speed at different angles. When the balls strike ground their velocities are v_1 , v_2 and v_3 respectively, then

a)
$$v_1 > v_2 > v_3$$

b)
$$v_3 > v_2 > v_1$$

c)
$$v_1 = v_2 = v_3$$

d)
$$v_1 < v_2 < v_3$$

368. The angular amplitude of a simple pendulum is θ_0 . The maximum tension in its string will be

a)
$$mg(1-\theta_0)$$

b)
$$mg(1 + \theta_0)$$

c)
$$mg(1-\theta_0^2)$$

d)
$$mg(1 + \theta_0^2)$$

369. The resultant of two forces, each P, acting at an angle θ is

a)
$$2P \sin \frac{\theta}{2}$$

b)
$$2P \cos \frac{\theta}{2}$$

c)
$$2P\cos\theta$$

d)
$$P\sqrt{2}$$

370. A bomber plane moves horizontally with a speed of 500 m/s and a bomb released from it, strikes the ground in 10 sec. Angle at which it strikes the ground will be $(g = 10 m/s^2)$

a)
$$tan^{-1}\left(\frac{1}{5}\right)$$

b)
$$\tan^{-1}\left(\frac{1}{2}\right)$$

371. A stone of mass 2kg is tied to a string of length 0.5 m. If the breaking tension of the string is 900 N, then the maximum angular velocity, the stone can have in uniform circular motion is

a)
$$30 \text{ rad } s^{-1}$$

b)
$$20 \text{ rad } s^{-1}$$

c)
$$10 \text{ rad } s^{-1}$$

d)
$$25 \text{ rad } s^{-1}$$

372. A particle has velocity $\sqrt{3rg}$ at the highest pint in vertical circle. Find the ratio of tensions at the highest and lowest point

373. If $\vec{A} \cdot \vec{B} = AB$, then the angle between \vec{A} and \vec{B} is

374. A car of mass $800 \, kg$ moves on a circular track of radius $40 \, m$. If the coefficient of friction is 0.5, then maximum velocity with which the car can move is

b)
$$14 \, m/s$$

c)
$$8 m/s$$

375. Two projectiles A and B thrown with speeds in the ratio 1: $\sqrt{2}$ acquired the same heights. If A is thrown at an angle of 45° with the horizontal, the angle of projection of B will be

376. Toy cart tied to the end of an unstretched string of length a, when revolved moves in a horizontal circle of radius 2a with a time period T. Now the toy cart is speeded up until it moves in a horizontal circle of radius 3a with a period T'. If Hook's law holds then

a)
$$T' = \sqrt{\frac{3}{2}} T$$

b)
$$T' = \left(\frac{\sqrt{3}}{2}\right)T$$

c)
$$T' = \left(\frac{3}{2}\right)T$$

$$d) T' = T$$

377. If a cycle wheel of radius 4 m completes one revolution in two seconds. Then acceleration of a point on the cycle wheel will be

a)
$$\pi^2 m/s^2$$

b)
$$2\pi^2 m/s^2$$

c)
$$4\pi^2 m/s^2$$

d)
$$8\pi m/s^2$$

378. Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously

$$\vec{F}_1 = 5\hat{\imath} - 5\hat{\jmath} + 5\hat{k}, \quad F_2 = 2\hat{\imath} + 8\hat{\jmath} + 6\hat{k}, \quad F_3 = -6\hat{\imath} + 4\hat{\jmath} - 7\hat{k},$$

$$F_4 = -\hat{\imath} - 3\hat{\jmath} - 2\hat{k}$$
. The particle will move

a) in
$$x - y$$
 plane

b) in
$$y - z$$
 plane

c) in
$$x - z$$
 plane

d) along
$$x$$
-axis

379. A particle is projected from a point A with velocity $u\sqrt{2}$ at an angle of 45° with horizontal as shown in figure. It strikes the plane BC at right angles. The velocity of the particle at the time of collision is

d) u

380. The magnitude of the centripetal force acting on a body of mass m executing uniform motion in a circle of radius r with speed v is

- a) mvr
- b) mv^2/r
- c) v/r^2m
- d) v/rm

381. A particle moves along a circle of radius $\left[\frac{20}{\pi}\right]$ m with constant tangential acceleration. If the velocity of the particle is 80 m/s at the end of the second revolution after motion has begun, the tangential acceleration is

- a) 40 ms^{-2}
- b) $640 \, \text{mms}^{-2}$
- c) $160 \, \text{mms}^{-2}$
- d) 40 mms^{-2}

382. A bullet is fired from a cannon with velocity 500 m/s. If the angle of projection is 15° and $g = 10 m/s^2$. Then the range is

- a) $25 \times 10^3 \, m$
- b) $12.5 \times 10^3 m$
- c) $50 \times 10^2 \, m$
- d) $25 \times 10^2 \, m$

383. If the length of the second's hand in a stop-clock is 3 cm, the angular velocity and linear velocity of the tip is

a) 0.2047 rads⁻¹, 0.0314 ms⁻¹

b) 0.2547 rads^{-1} , 0.0314 ms^{-1}

c) 0.1472 rads⁻¹, 0.06314 ms⁻¹

d) 0.1047 rads^{-1} , 0.00314 ms^{-1}

384. If a car is to travel with a speed v along the frictionless, banked circular track of radius r, the required angle of banking so that the car does skid is

- a) $\theta = \tan^{-1}\left(\frac{v^2}{rg}\right)$ b) $\theta = \tan^{-1}\left(\frac{v}{rg}\right)$ c) $\theta = \tan^{-1}\left(\frac{r^2}{vg}\right)$ d) $\theta < \tan^{-1}\left(\frac{v^2}{rg}\right)$

385. A body moves along a circular path of radius 5 m. The coefficient of friction between the surface of path and the body is 0.5. The angular velocity, in radians/sec, with which the body should move so that it does not leave the path is $(g = 10 \text{ms}^{-2})$

a) 4

b) 3

c) 2

d) 1

386. A sphere is suspended by a thread of length l. What minimum horizontal velocity has to be imparted the ball for it to reach the height of the suspension

a) gl

b) 2gl

- c) \sqrt{gl}

387. A body of mass 5 kg is moving in a circle of radius 1 m with an angular velocity of 2 rad s⁻¹. The centripetal force, is

- a) 10 N
- b) 20 N
- c) 30 N

388. A body is thrown with a velocity of 9.8 m/s making an angle of 30° with the horizontal. It will hit the ground after a time

- a) 1.5 s
- b) 1 s

c) 3 s

d) 2s

389. A particle performing uniform circular motion has

- a) Radial velocity and radial acceleration
- b) A radial velocity and transverse acceleration
- c) Transverse velocity and radial acceleration
- d) Transverse velocity and transverse acceleration

390. Four concurrent coplanar forces in newton are acting at a point and keep it in equilibrium figure. Then values of F and θ are

a) 1 N, 60°

b) 2 N, 60°

c) √2 N,90°

d) 2 N, 90°

391. On an unbanked road, a cyclist negotiating a bend of radius r at velocity v leans inwards by an angle

a) $\tan^{-1}\left(\frac{v^2}{2gr}\right)$

b) $\tan^{-1}\left(\frac{v^2}{gr}\right)$

c) $tan^{-1}\left(\frac{rg}{v^2}\right)$

d) $\tan^{-1}\left(\frac{v}{gr}\right)$

392. If a particle of mass m is moving in a horizontal circle of radius r with a centripetal force $(-k/r^2)$, the total energy is

a) $-\frac{k}{2r}$

b) $-\frac{k}{r}$

c) $-\frac{2k}{r}$

d) $-\frac{4k}{r}$

393. Four bodies P, Q, R and S are projected with equal velocities having angles of projection 15°, 30°, 45° and 60° with the horizontal respectively. The body having shortest range is

a) P

b) (

c) R

d) S

394. A body of mass m kg is rotating in a vertical circle at the end of a string of length r metre. The difference in the kinetic energy at the top and bottom of the circle is

a) $\frac{mg}{r}$

b) $\frac{2mg}{r}$

c) 2mgr

d) mgr

395. A car of mass 1000 kg moves on a circular track of radius 20 m. If the coefficient of friction is 0.64, then the maximum velocity with which the car can move is

a) 22.4 ms^{-1}

b) 5.6 ms⁻¹

c) 11.2 ms⁻¹

d) None of these

396. A cyclist is travelling on a circular section of highway of radius 2500 ft at the speed of 60 mile h^{-1} . The cyclist suddenly applies the brakes causing the bicycle to slown sown at constant rate. Knowing that after 8 s the speed has been reduced to 45 mile h^{-1} . The acceleration of the bicycle immediately after the brakes have been applied is

a) 2 ft/s^2

b) 4.14 ft/s^2

c) 3.10 ft/s^2

d) 2.75 ft/s^2

397. Angle between \vec{A} and \vec{B} is θ . What is the value of \vec{A} . $(\vec{B} \times \vec{A})$?

a) $A^2B\cos\theta$

b) $A^2B \sin\theta\cos\theta$

c) $A^2B \sin\theta$

d) zero

398. For an object thrown at 45° to horizontal, the maximum height (H) and horizontal range (R) are related as

a) R = 16H

b) R = 8H

c) R = 4H

d) R = 2H

399. A point mass m is suspended from a light thread of length l, fixed atO, is whirled in a horizontal circle at constant speed as shown. From your point of view, stationary with respect to the mass, the forces on the mass are

a)

b)

c)

ď

400. The speed of revolution of a particle going around a circle is doubled and its angular speed is halved. What happens to the centripetal acceleration?

a) Becomes four times

b) Double

c) Halved

d) Remains unchanged

401. The magnitudes of the two vectors \vec{a} and \vec{b} are a and b respectively. The vector product of \vec{a} and \vec{b} cannot be

a) equal to zero

b) less than ab

c) equal to ab

d) greater than ab

402. The angle turned by a bo	ody undergoing circular mot	tion depends on time as $ heta$ =	$= \theta_0 + \theta_1 t + \theta_2 t^2$. Then the
angular acceleration of t	he body is		
a) θ_1	b) θ_2	c) $2\theta_1$	d) $2\theta_2$
403. A particle of mass m is re	otating in a horizontal circle	e of radius R and is attached	d to a hanging mass M as
shown in the figure. The	speed of rotation required	by the mass m keep M stea	dy is
4			
\overline{maR}	maR	\overline{ma}	\overline{mR}
a) $\frac{mgR}{M}$	b) $\frac{mgR}{m}$	c) $\sqrt{\frac{mg}{MR}}$	d) $\frac{mR}{Mg}$
√ M	√ <i>m</i>		ν -
404. A projectile is projected	: [2] 2 P. B. H.	ias the maximum possible l	norizontal range, then its
kinetic energy at the hig) 0.55 1/	D 4 0 1/
a) 0.25 <i>K</i>	b) 0.5 K	c) 0.75 K	d) 1.0 K
405. In hydrogen atom, the el		nucleus with velocity 2.18	× 10° ms ⁻¹ in an orbit of
	leration of the electron is	2 0 10-22 -2	D 0 4 o 12 = -2
a) $9 \times 10^{18} \text{ ms}^{-2}$		c) $9 \times 10^{-22} \text{ ms}^{-2}$	
406. A particle moves along a	parabolic path $y = 9x^2 \ln s$	such a way that the x-comp	onentes of velocity remains
constant and has a value	$\frac{1}{3}$ ms ⁻¹ . The acceleration of	the projectile is	
a) $\frac{1}{2}\hat{j} \text{ ms}^{-2}$	$\frac{1}{3}$ ms ⁻¹ . The acceleration of b) $3\hat{j}$ ms ⁻²	c) $\frac{2}{3}\hat{j}$ ms ⁻²	d) $2\hat{j} \text{ ms}^{-2}$
407. In uniform circular moti-		3	
a) Perpendicular to each	- W	b) Same direction	
c) Opposite direction		d) Not related to each oth	ner
408. A body is projected at su	ch angle that the horizontal		
projection is			
a) 42°8′	b) 53°7′	c) 33°7′	d) 25°8′
409. A stone of mass 1 kg is ti	ed at one end of string of le	ngth 1 m. It is whirled in a	vertical circle at constant
speed of 4 ms ⁻¹ . The ten	sion in the string is 6 N who	en the stone is at $(g = 10m)$	s^{-2})
a) Top of the circle	b) Bottom of the circle	c) Half way down	d) None of these
410. A body is projected from	the earth at angle 30° with	the horizontal with some i	nitial velocity. If its range is
20 m, the maximum heig	tht reached by its is (in met	1989	
a) $5\sqrt{3}$	b) $\frac{5}{\sqrt{3}}$	c) $\frac{10}{\sqrt{2}}$	d) $10\sqrt{3}$
	γS	γs	
411. A small disc is on the top			
V	sc for it to leave the hemisp	702	V- 98
a) $v = \sqrt{2gR}$	b) $v = \sqrt{gR}$	c) $v = \frac{g}{R}$	d) $v = \sqrt{g^2 R}$
412. A body is fired vertically	upward. At half the maxim	um height, the velocity of th	ne body is $10 m/s$. The
maximum height raised	by the body is		
a) 0 <i>m</i>	b) 10 m	c) 15 m	d) 20 m
413. Two bullets are fired sin		nd with different speeds fro	om the same place. Which
bullet will hit the ground	i first?	13 ml	
a) The faster bullet	•	b) The slower bullet	
c) Both will hit simultan	eously	d) Depends on the masse	S

414	414. The speed of projection of a projectile is increased by 10%, without changing the angel of projection. The				
	percentage increase in the range will be				
	a) 10%	b) 20%	c) 15%	d) 5%	
415	ALM STORES TO SECURITION OF THE SECURITION OF TH			height <i>h</i> and separated by	
		25 DE 1807 PO	it just crosses two wans or	neight h and separated by	
	h Find the angle of project		-) (00	1) 200	
	a) 15°	b) 75°	c) 60°	d) 30°	
416		particle moving along a cir	cle of radius R depends on	the distance covered s as	
	$k = as^2$ where a is a cons	20 0000 40400			
	a) $2a^{\frac{S^2}{R}}$	b) $2as\left(1+\frac{s^2}{R^2}\right)^{1/2}$	c) 2as	d) $2a\frac{R^2}{a}$	
	a) $2a \frac{R}{R}$	$1 + \frac{1}{R^2}$	c) zus	$\frac{d}{s}$	
417	Two particles of equal ma	asses are revolving in circu	lar paths of radii r_1 and r_2 i	respectively with the same	
	speed. The ratio of their o			and the second s	
	(558 V-91	2 <u></u>	2	2	
	a) $\frac{r_2}{r_1}$	b) $\frac{r_2}{r_1}$	c) $\left(\frac{r_1}{r_2}\right)^2$	d) $\left(\frac{r_2}{r_2}\right)^2$	
	r_1	$\sqrt{r_1}$	$\langle r_2 \rangle$	r_1	
418	A ball rolls off the top of a	stairway with horizontal v	velocity $v_0 m s^{-1}$. If the step	s are h metre high and w	
	metre wide, the ball will l		(8) 5 5		
			hv_0^2	$2hv_0^2$	
	a) $n = \frac{3}{gw^2}$	b) $n = \frac{2hv_0^2}{gw}$	c) $n = \frac{6}{gw^2}$	d) $n = \frac{\sigma}{gw^2}$	
419	<i>O</i>	he can jump a maximum h	0	0	
117	575	speeds a negligible time o		vien what speed can be	
	a) $9.8 \mathrm{ms}^{-1}$	b) 4.42 ms ⁻¹		d) 3.13 ms^{-1}	
420				ed slightly, it slides down. At	
420				ed slightly, it slides down. At	
		oottom, the particle will lea		4) 7	
101	a) 14 m	b) 28 m	c) 35 m	d) 7 m	
421			ius of front wheel. If r_f and	\emph{r}_r are the radius, \emph{v}_f and \emph{v}_r	
	are the speed of top most				
	a) $v_r = 2v_f$	b) $v_f = 2v_r$		d) $v_f > v_r$	
422		lar horizontal track of radii	1977	(A)	
	bob is suspended from th	e roof of the car by a light i	rigid rod of length 1.00 m. T	The angle made by the rod	
	with track is				
	a) Zero	b) 30°	c) 45°	d) 60°	
423	The horizontal range of a	projectile is $4\sqrt{3}$ times its	maximum height. Its angle	of projection will be	
	a) 45°	b) 60°	c) 90°	d) 30°	
424	An athlete completes one	round of a circular track o	fradius $10 m$ in $40 sec$. The	e distance covered by him in	
	2 min 20 sec is			adder (1900) i 1840 et deut et europe (1904) et de en europe (1904) et de en en 💌 et europe (1904) et de en europe	
	a) 70 m	b) 140 m	c) 110 m	d) 220 m	
425		roplane is moving with 150		of the second se	
		e target should be bomb be	1970		
	a) 605.3 m	b) 600 m	c) 80 m	d) 230 m	
426	2003년(1977년 1977년 1974년 1974년 - 1974년	ched off its angular velocity			
120		it make before coming to re			
	a) 18	b) 12	c) 36	d) 48	
127	V.**3	ne following sets of forces of		u) 40	
447		b) 10,10 and 20		d) 10 10 and 10	
420	a) 10,20 and 40	THE PROPERTY OF THE PROPERTY O	c) 10,20 and 20	d) 10,10 and 10	
428		nstant angular velocity in c			
			1.32 - 574	e same, the new force will be	
	a) 2 <i>F</i>	b) F ²	c) 4F	d) F/2	

429. A body of mass 5 k	g is whirled in a vertical circ	ele by a string 1 m long. Ca	alculate velocity at the top of the
circle for just loopi	ng the vertical loop		
a) 3.1 ms^{-1}	b) 7 ms ⁻¹	c) 9 ms^{-1}	d) 7.3 ms^{-1}
430. A projectile is thro	wn with a speed $\it u$ at an ang	le θ to the horizontal. The	radius of curvature of its
	e velocity vector of the proje		ith the horizontal is
a) $\frac{u^2 \cos^2 \alpha}{g \cos^2 \theta}$	b) $\frac{2u^2\cos^2\alpha}{g\cos^2\theta}$	c) $\frac{u^2 \cos^2 \theta}{g \cos^3 \alpha}$	d) $\frac{u^2 \cos^2 \theta}{g \cos^2 \alpha}$
$\frac{1}{g\cos^2\theta}$	$\frac{1}{g\cos^2\theta}$	$\frac{1}{g\cos^3\alpha}$	$\frac{\alpha}{g\cos^2\alpha}$
431. The sum of two year	ctore \overrightarrow{A} and \overrightarrow{R} is at right and	les to their difference. The	an

a)
$$A = B$$

b) $A = 2B$

c)
$$R = 2A$$

c)
$$B = 2A$$

d) \vec{A} and \vec{B} have the same direction

432. The radius vector and linear momentum are respectively given by vector $2\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} - 2\hat{j} + \hat{k}$. Their angular momentum is

a)
$$2\hat{i} - 4\hat{j}$$

b)
$$4\hat{i} - 8\hat{k}$$

c)
$$2\hat{i} - 4\hat{j} + 2\hat{k}$$

d)
$$4\hat{i} - 8\hat{j}$$

433. A small block is shot into each of the four tracks as shown below. Each of the frictionless track rises to the same height. The speed, which the block enters the tracks, is same in all cases. At the highest point of the track, normal reaction is maximum in

434. A body moving along a circular path of radius R with velocity v, has centripetal acceleration a. If its velocity is made equal to 2v, then its centripetal acceleration is

c)
$$\frac{a}{4}$$

d)
$$\frac{a}{2}$$

435. The minimum velocity (in ms⁻¹) with which a car driver must traverse a flat curve of radius of 150 m and coefficient of friction 0.6 to avoid skidding is

436. A cart is moving horizontally along a straight line with constant speed 30 ms⁻¹. A projectile is to be fired from the moving cart in such a way that it will return to the cart has moved 80 m. At what speed (relative to the cart) must the projectile be fired? (Take $g = 10 \text{ ms}^{-2}$)

a)
$$10 \text{ ms}^{-1}$$

b)
$$10\sqrt{8} \text{ms}^{-1}$$

c)
$$\frac{40}{3}$$
 ms⁻¹

d) None of the above

437. The trajectory of a particle moving in vast maidan is as shown in the figure. The coordinates of a position A are (0,2). The coordinates of another point at which the instantaneous velocity is same as the average velocity between the points are

a) (1,4)

b) (5,3)

c) (3,4)

d) (4, 1)

438. A ball thrown by a boy is caught by another after 2 sec some distance away in the same level. If the angle of projection is 30°, the velocity of projection is

a) $19.6 \, m/s$

b) $9.8 \, m/s$

c) $14.7 \, m/s$

d) None of these

439. At the top of the trajectory of a projectile, the direction of its velocity and acceleration are

a) perpendicular to each other

b) parallel to each other

c) inclined to each other at angle of 45°

d) antiparallel to each other

- 440. A tachometer is a device to measure
 - a) Gravitational pull
- b) Speed of rotation
- c) Surface tension
- d) Tension in a spring
- 441. The path of a projectile in the absence of air drag is shown in the figure by dotted line. If the air resistance is not ignored then which one of the path is shown in the figure is appropriate for the projectile

a) B

b) A

c) D

- d) C
- 442. A small body of mass m slides down from the top of a hemisphere of radius r. The surface of block and hemisphere are frictionless. The height at which the body lose contact with the surface of the sphere is

a) $\frac{3}{2}r$

- c) $\frac{1}{2}gt^2$
- 443. The maximum velocity (in ms^{-1}) with which a car driver must traverse a flat curve of radius 150 m and coefficient of friction 0.6 to avoid skidding is
 - a) 60

b) 30

c) 15

- d) 25
- 444. Two identical discs of same radius R are rotating about their axes in opposite directions with the same constant angular speed ω . The discs are in the same horizontal plane. At time t=0, the points P and Q are facing each other as shown in figure. The relative speed between the two points P and Q is V_r as function of times best represented by

- 445. A car is moving in a circular horizontal track of radius 10m with a constant speed of 10 ms⁻¹. The angle made by the rod with track is
 - a) Zero

c) 45°

d) 60°

An object of mass 2 m is a				
im object of made a mile	projected with a speed of 1	00 ms^{-1} at angle $\theta = \sin^{-1}$	$\left(\frac{3}{5}\right)$ to the horizontal. At the	
highest point, the object breaks into pieces of same mass m and the first one comes to rest. The distance				
	•			
		0 00 1	, (0 ,0	
	b) 1280	c) 1440	d) 960	
지하면 하시아 되었다면서 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그			10.50 GARAN	
the ground, the speed of	the ball is			
			d) None of these	
			9 9	
	그 그리는 그 그리는 아이들이 하면 있었다고 있다면 하는 것이 없다.			
			Management and Management (1985) and a sunfall of the same a production of the	
	ar path with a constant spe	ed v . What is the centripeta	al acceleration of the	
	1.3	20-3 PF 20-20-20	13.0	
			d) 2 <i>mvl</i>	
. The time taken by the pro	ojectile to reach from A to	B is t, then the distance AB	is equal to	
<u>"</u>				
В				
V				
300				
ARM		<i>-</i>	2/#	
a) 2 ut	b) $\sqrt{3}$ ut	c) $\frac{\sqrt{3}}{2}ut$	d) $\frac{ut}{\sqrt{2}}$	
A 2 kg stone at the and a	fa atning 1 m lang is whinle	2	Vβ	
			istant speed. The speed of	
- 25	tension in the string win b		cla	
0.50			cie	
1747, T. B. T. B.	ucnanded by a string from		nulled herizentally by a	
			•	
77.0	1. The second		d) 19.6 N, 9.8 N	
	1:5			
그 사이들이 그림은 경우에 한다면 그 아이를 그게 하는데 가득히 하고 모르는데 다.	얼마 하나 아니 아이를 가게 되었다. 그 아이들은 아이를 받아 하나 어떻게 되었다.		[2018] - [2018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018]	
	rucie moves m a circle with	speed v, the het force on th	e particle (directed toward	
	mv^2	mv^2	d) zero	
a) T	b) $T - \frac{mv}{l}$	c) $T + \frac{mv}{l}$	u) zero	
	i L			
3. A particle moves in a plan	ne with constant acceleration	· ·	om the initial velocity. The	
		on in a direction different fr	om the initial velocity. The	
path of the particle will b	e	on in a direction different fr		
path of the particle will b a) A straight line	e b) An arc of a circle	on in a direction different fr c) A parabola	om the initial velocity. The	
path of the particle will b a) A straight line If the resultant of \vec{A} and \vec{E}	e b) An arc of a circle makes angle α with \vec{A} and	on in a direction different fr c) A parabola eta with \overrightarrow{B} then	d) An ellipse	
path of the particle will b a) A straight line If the resultant of \vec{A} and \vec{B} a) $\alpha < \beta$ always	b) An arc of a circle \vec{b} makes angle α with \vec{A} and \vec{b}) $\alpha < \beta$, if $A < B$	on in a direction different from a direction different from a and a with \overrightarrow{B} then a	d) An ellipse d) $\alpha < \beta$, if $A = B$	
path of the particle will be a) A straight line for the resultant of \vec{A} and \vec{B} a) $\alpha < \beta$ always in A cylindrical vessel particles.	e b) An arc of a circle \vec{b} makes angle α with \vec{A} and b) $\alpha < \beta$, if $A < B$ ally filled with water is rota	on in a direction different from α and β are β with β then c) $\alpha < \beta$, if $A > B$ the definition of β its description in β .	d) An ellipse d) $\alpha < \beta$, if $A = B$ al axis. It's surface will	
path of the particle will be a) A straight line of If the resultant of \overrightarrow{A} and \overrightarrow{B} a) $\alpha < \beta$ always in A cylindrical vessel partical Rise equally	b) An arc of a circle \vec{b} makes angle α with \vec{A} and \vec{b}) $\alpha < \beta$, if $A < B$ ally filled with water is rotable.	on in a direction different from in a direction different from in a direction different from in a direction β with \overrightarrow{B} then c) $\alpha < \beta$, if $A > B$ atted about its vertical central c). Rise from the middle	d) An ellipse d) $\alpha < \beta$, if $A = B$ al axis. It's surface will d) Lowered quality	
path of the particle will be a) A straight line if the resultant of \vec{A} and \vec{B} a) $\alpha < \beta$ always if A cylindrical vessel partial a) Rise equally is A projectile is thrown in the	b) An arc of a circle \vec{b} makes angle α with \vec{A} and \vec{b}) $\alpha < \beta$, if $A < B$ ally filled with water is rota \vec{b}) Rise from the sides the upward direction making	c) A parabola β with \overrightarrow{B} then β c) $\alpha < \beta$, if $A > B$ Ited about its vertical central β . C) Rise from the middle and an angle of 60° with the length β .	d) An ellipse d) $\alpha < \beta$, if $A = B$ al axis. It's surface will d) Lowered quality horizontal direction with	
path of the particle will be a) A straight line of \vec{A} and \vec{B} as $\alpha < \beta$ always be A cylindrical vessel particle. A projectile is thrown in the velocity of 147 ms ⁻¹ . The	b) An arc of a circle \vec{b} makes angle α with \vec{A} and \vec{b}) $\alpha < \beta$, if $A < B$ ally filled with water is rota \vec{b}) Rise from the sides the upward direction making the time after which its in	on in a direction different from α and β with β then c) $\alpha < \beta$, if $A > B$ the about its vertical central β with β in β with β in β with the lang an angle of β with the langing and β with the langing	d) An ellipse d) $\alpha < \beta$, if $A = B$ al axis. It's surface will d) Lowered quality horizontal direction with tal is 45° , is	
path of the particle will be a) A straight line a. If the resultant of \overrightarrow{A} and \overrightarrow{E} as $\alpha < \beta$ always be a. A cylindrical vessel partial a. Rise equally be a projectile is thrown in the velocity of 147 ms ⁻¹ . The a.) 25 s	b) An arc of a circle $\vec{\beta}$ makes angle α with \vec{A} and b) $\alpha < \beta$, if $A < B$ ally filled with water is rota b) Rise from the sides the upward direction making the time after which its in b) 10.98 s	c) A parabola β with \overrightarrow{B} then c) $\alpha < \beta$, if $A > B$ ited about its vertical central control Rise from the middle and an angle of 60° with the lacking an angle of 5.49 s	d) An ellipse d) $\alpha < \beta$, if $A = B$ al axis. It's surface will d) Lowered quality horizontal direction with tal is 45°, is d) 2.745 s	
path of the particle will be a) A straight line of the resultant of \overrightarrow{A} and \overrightarrow{E} a) $\alpha < \beta$ always a. A cylindrical vessel partial a. Rise equally be a projectile is thrown in the velocity of 147 ms ⁻¹ . The a.) 25 s.	b) An arc of a circle \vec{B} makes angle α with \vec{A} and \vec{B} and \vec{A} and \vec{B} with \vec{A} and \vec{B} ally filled with water is rota \vec{B} b) Rise from the sides the upward direction making the time after which its in \vec{B} b) 10.98 s	c) A parabola β with \overrightarrow{B} then c) $\alpha < \beta$, if $A > B$ ited about its vertical central α is from the middle α and an angle of 60° with the lacking an angle of 5.49 s unnel whose inner surface in	d) An ellipse d) $\alpha < \beta$, if $A = B$ al axis. It's surface will d) Lowered quality horizontal direction with tal is 45°, is d) 2.745 s	
path of the particle will be a) A straight line. If the resultant of \overrightarrow{A} and \overrightarrow{E} a) $\alpha < \beta$ always is A cylindrical vessel partial a) Rise equally is A projectile is thrown in evelocity of 147 ms ⁻¹ . The a) 25 s is A particle describes a hor 0.5 m/s . What is the height	b) An arc of a circle β makes angle α with \overrightarrow{A} and b) $\alpha < \beta$, if $A < B$ ally filled with water is rota b) Rise from the sides the upward direction making the time after which its in b) 10.98 s rizontal circle in a conical fight of the plane of circle from	on in a direction different from α (a) A parabola β with \overline{B} then α (b) α (c) α (c) β its vertical central conditions and β with the lang an angle of 60° with the landination with the horizont β (c) 5.49 s annel whose inner surface is more vertex of the funnel	d) An ellipse d) $\alpha < \beta$, if $A = B$ al axis. It's surface will d) Lowered quality horizontal direction with tal is 45°, is d) 2.745 s	
path of the particle will be a) A straight line. If the resultant of \vec{A} and \vec{E} a) $\alpha < \beta$ always is A cylindrical vessel partial a) Rise equally is A projectile is thrown in the velocity of 147 ms ⁻¹ . The a) 25 s is A particle describes a horous $0.5 \ m/s$. What is the heigh a) $0.25 \ cm$	b) An arc of a circle \vec{b} makes angle α with \vec{A} and \vec{b}) $\alpha < \beta$, if $A < B$ ally filled with water is rota \vec{b}) Rise from the sides the upward direction making the time after which its in \vec{b}) 10.98 s rizontal circle in a conical fight of the plane of circle fro \vec{b}) 2 cm	c) A parabola β with \overrightarrow{B} then c) $\alpha < \beta$, if $A > B$ ited about its vertical central α and α with the length and α with the horizont α is a sum of α . α is a from the middle of α with the length and α is a sum of α with the horizont α is a sum of α with the horizont α is a sum of α with the horizont α is a sum of α with the horizont α is a sum of α is a sum of α with the funnel α is a sum of α with the funnel α is a sum of α with the funnel α is a sum of α with α is a sum of α is a sum of α is a sum of α with α is a sum of α in α is a sum of α in α is a sum of α in α in α in α is a sum of α in α	d) An ellipse d) $\alpha < \beta$, if $A = B$ al axis. It's surface will d) Lowered quality horizontal direction with tal is 45°, is d) 2.745 s s smooth with speed of d) 2.5 cm	
path of the particle will be a) A straight line. If the resultant of \vec{A} and \vec{E} a) $\alpha < \beta$ always is A cylindrical vessel partial a) Rise equally is A projectile is thrown in the velocity of 147 ms ⁻¹ . The a) 25 s is A particle describes a horous $0.5 \ m/s$. What is the heigh a) $0.25 \ cm$	b) An arc of a circle \vec{B} makes angle α with \vec{A} and \vec{B} and \vec{B} with \vec{A} and \vec{B} ally filled with water is rotated b) Rise from the sides the upward direction making the time after which its in \vec{B} b) 10.98 solution the plane of circle frow \vec{B} b) 2 cm architecture and \vec{B} e motion, acceleration and	on in a direction different from α (a) A parabola β with \overline{B} then α (b) α (c) α (c) β its vertical central conditions and β with the lang an angle of 60° with the landination with the horizont β (c) 5.49 s annel whose inner surface is more vertex of the funnel	d) An ellipse d) $\alpha < \beta$, if $A = B$ al axis. It's surface will d) Lowered quality horizontal direction with tal is 45°, is d) 2.745 s s smooth with speed of d) 2.5 cm	
	a) 3840 3. A child travelling in a trait the ground, the speed of ta.) Same as V 3. On the centre of a friction inserted. On the two ends such a way that half of the made to move in a circulmoving ball a) mvl 3. The time taken by the proving V 4. A V	a) 3840 b) 1280 A child travelling in a train throws a ball outside with the ground, the speed of the ball is a) Same as V b) Greater than V On the centre of a frictionless table a small hole is minserted. On the two ends of the string two balls of the such a way that half of the string is on the table top a made to move in a circular path with a constant speemoving ball a) mvl b) g The time taken by the projectile to reach from A to a a A a a a a a a a a	a) 3840 b) 1280 c) 1440 7. A child travelling in a train throws a ball outside with a speed V . According to a the ground, the speed of the ball is a) Same as V b) Greater than V c) Less than V 7. On the centre of a frictionless table a small hole is made, through which a weight inserted. On the two ends of the string two balls of the same mass m are attaches such a way that half of the string is on the table top and half is hanging below. The made to move in a circular path with a constant speed v . What is the centripeta moving ball a) mvl b) g c) Zero b. The time taken by the projectile to reach from A to B is t , then the distance AB b. A $2 kg$ stone at the end of a string $1 m$ long is whirled in a vertical circle at a conthest stone is $4 m/sec$. The tension in the string will be $52 N$, when the stone is a) At the top of the circle b) At the bottom of the circle c) Halfway down d) None of the above A body of mass $\sqrt{3}$ kg is suspended by a string from a rigid support. The body is force F until the string makes an angle of 30° with the vertical. The value o F and $19.6 N$; $19.6 N$ b) $9.8 N$; $9.8 N$ c) $9.8 N$, $19.6 N$ c) One end of a string of length l is connected to a particle of mass m and other horizontal table. If the particle moves in a circle with speed v , the net force on the the centre) is	

- b) At the point of drop
- c) At the top most point
- d) Anywhere in between the point of projection and two most point
- 459. A fighter plane is moving in a vertical circle of radius r'. Its minimum velocity at the highest point of the circle will be
 - a) $\sqrt{3}gr$
- b) $\sqrt{2 g r}$
- d) $\sqrt{g r/2}$
- 460. A projectile is projected with a speed u making an angle 2θ with the horizontal. What is the speed when its direction of motion makes an angle θ with the horizontal
 - a) $(u\cos 2\theta)/2$
- b) $u\cos\theta$
- c) $u(2\cos\theta \sec\theta)$
- d) $u(\cos\theta \sec\theta)$
- 461. For motion in a plane with constant acceleration \vec{a} , initial velocity \vec{v}_0 and final velocity \vec{v} after time t, we
 - a) $\vec{v} \cdot (\vec{v} \vec{a}t) = \vec{v}_0 \cdot (\vec{v}_0 + \vec{a}t)$

b) $\vec{v} \cdot \vec{v}_0 = at^2$

c) $\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}_0 = \vec{\mathbf{v}} \cdot \vec{\mathbf{v}}_0 t$

- d) $\vec{v}_0 \cdot \vec{v}_0 = \vec{a} \cdot \vec{v}_0 t$
- 462. The average acceleration vector for a particle having a uniform circular motion is
 - a) A constant vector of magnitude v^2/r
 - b) A vector of magnitude v^2/r directed normal to the plane of the given uniform circular motion
 - c) Equal to the instantaneous acceleration vector at the start of the motion
 - d) A null vector
- 463. Two inclined planes are located as shown in figure. A particle is projected from the foot of one frictionless plane along its line with a velocity just sufficient to carry it to top after which the particle slides down the other frictionless inclined plane. The total time it will take to reach the point *C* is

b) 3 s

- c) $2\sqrt{2}$ s
- 464. When a body is thrown with a velocity u making an angle θ with the horizontal plane, the maximum distance covered by it in horizontal direction is
 - a) $\frac{u^2 \sin \theta}{g}$
- b) $\frac{u^2 \sin 2\theta}{2g}$ c) $\frac{u^2 \sin 2\theta}{g}$
- d) $\frac{u^2 \cos 2\theta}{g}$
- 465. An aeroplane is flying with a uniform speed of 100 m/s along a circular path of radius 100 m. the angular speed of the aeroplane will be
 - a) 1 rad/sec
- b) 2 rad/sec
- c) 3 rad/sec
- d) 4 rad/sec
- 466. An arrow is shot into air. Its range is 200 m and its time of flight is 5s. If $g = 10m/s^2$, then the horizontal component of velocity of the arrow is
 - a) $12.5 \, m/s$
- b) $25 \, m/s$
- c) $31.25 \, m/s$
- d) $40 \, m/s$
- 467. Given θ is the angle between \vec{A} and \vec{B} . Then $|\hat{A} \times \hat{B}|$ is equal to
- b) Cos θ
- d) Cot θ

- 468. A body moving with constant speed in a circular path has
 - a) angular momentum
- b) constant acceleration c) constant velocity
- d) no work done
- 469. The resultant of a system of forces shown in figure is a force of 10 N parallel to given forces through R, where PR equals

- a) (2/5)R Q
- b) (3/5)R Q
- c) (2/3)R Q
- d) (1/2)R Q
- 470. A body of mass 5 kg is moving in a circle of radius 1 m with an angular velocity of 2 radian/sec. The centripetal force is

a) 10 N	b) 20 N	c) 30 N	d) 40 N	
471. Two particles A	and B are projected with sa	me speed so that ratio of th	neir maximum heights reached	is
3:1. If the speed	of A is doubled without alte	ering other parameters, the	e ratio of horizontal ranges atta	ined
by A and B is				

475. Given
$$\vec{P} \cdot \vec{Q} = 0$$
, then $|\vec{P} \times \vec{Q}|$ is

a) $|\vec{P}||\vec{Q}|$ b) Zero c) 1 d) \sqrt{PQ}

476. An object is being weighed on a spring balance moving around a curve of radius
$$100 \text{ m}$$
 at a speed 7 ms^{-1} . The object has a weight of 60 kg-wt . The reading registered on the spring balance would be

477. Two projectiles
$$A$$
 and B are thrown with velocities v and $\frac{v}{2}$ respectively. They have the same range. If B is thrown at an angle of 15° to the horizontal, a must have been thrown at an angle

a)
$$\sin^{-1}\left(\frac{1}{16}\right)$$
 b) $\sin^{-1}\left(\frac{1}{4}\right)$ c) $2\sin^{-1}\left(\frac{1}{4}\right)$ d) $\frac{1}{2}\sin^{-1}\left(\frac{1}{8}\right)$

478. An electric fan has blades of length 30
$$cm$$
 as measured from the axis of rotation. If the fan is rotating at 1200 r . p . m . The acceleration of a point on the tip of the blade is about a) 1600 m/\sec^2 b) 4740 m/\sec^2 c) 2370 m/\sec^2 d) 5055 m/\sec^2

479. A piece of wire is bent in the shape of a parabola
$$y = kx^2$$
 (y -axis vertical) with a bead of mass m on it. The bead can side on the wire without friction. It stays at the lowest point of the parabola when the wire is at rest. The wire is now accelerated parallel to the x -axis with a constant acceleration a . The distance of the new equilibrium position of the bead, where the bead can stay at rest with respect to the wire, from the y -axis is

a)
$$a/gk$$
 b) $a/2gk$ c) $2a/gk$ d) $a/4gk$ 480. If the angle of projection of a projectile is 30°, then how many times the horizontal range is larger than the maximum height?

480. If the angle of projection of a projectile is 30°, then how many times the horizontal range is larger than the maximum height?

a) 2

b) 3

c)
$$3\sqrt{4}$$

d) $4\sqrt{3}$

481. A scooter is going round a circular road of radius
$$100 \, m$$
 at a speed of $10 \, m/s$. The angular speed of the scooter will be

		rizontally with a velocity of	1)	
	ertically above a point <i>A</i> 7. The distance <i>AB</i> is	on the ground a bomb is re	eleased from it. The bomb s	strikes the ground at point
a) 1200 m	b) 0.33 km	c) 333.3 km	d) 3.33 km
483. T	he vector which can give	e unit vector along x -axis w	$rith \vec{A} = 2\hat{\imath} - 4\hat{\jmath} + 7\hat{k}, \vec{B} = 7$	$\hat{i} + 2\hat{j} - 5\hat{k}$ and $\vec{C} = -4\hat{i} +$
7	ĵ + 3k̂ is			
a) 4î + 5ĵ + 5k	b) $-5\hat{i} - 5\hat{j} + 5\hat{k}$	c) $-4\hat{i} - 5\hat{j} - 5\hat{k}$	d) $4\hat{i} - 5\hat{j} + 5\hat{k}$
484. A	wheel completes 2000 i	revolutions to cover the 9.5	km. distance. Then the dia	meter of the wheel is
) 1.5 m	b) 1.5 cm	c) 7.5 <i>cm</i>	d) 7.5 m
		eater than 1. The magnitud		
			c) more than AB	d) equal to A/B
		A = B. The angle between		
) 60°	b) 90°	c) 120°	d) 180°
				f radius 0.1 m with a speed
	경기 회사 이 경우하다 있다면 나를 했다면서 그리고 있는데 되었다. 아무리 아니는 아니는데 없다.	ming the effect of gravity is	s negligible, then linear velo	ocity, acceleration and
	ension in the string will $1.88 m/s$, $35.5 m/s^2$, $35.5 m/s^2$		b) 200 m /o 45 5m /o ² 45	- C M
) 3.88 m/s, 55.5m/s ² , 55		b) $2.88 m/s$, $45.5 m/s^2$, 45 d) None of these), 5 /V
	N N N N		(27)	mv^2
				force on the body is $\frac{mv^2}{r}$ and
	s directed towards the ce ircumference of the circl	entre. What is the work don	e by this force in moving th	ne body over half the
		b) Zero	mv^2	πr^2
a	$\frac{mv^2}{r} \times \pi r$	-,	c) $\frac{mv^2}{r^2}$	d) $\frac{\pi r^2}{mv^2}$
489. A	particle describes a hor	izontal circle in a conical fu	nnel whose inner surface i	s smooth with speed of
0	.5 ms^{-1} . What is the heig	ght of the plane of circle fro	m vertex of the funnel?	
) 0.25 cm	b) 2 cm	c) 4 cm	d) 2.5 cm
490. A	projectile is given an ini	itial velocity of $\hat{i} + 2\hat{j}$. The c	artesian equation of its pat	th is $(g = 10 \text{ ms}^{-2})$
		$b) y = 2x - 5x^2$		
		to a string and is moved in		making <i>n</i> revolutions per
		in the string when the stor		
) mg		b) $m(g + \pi n r^2)$ d) $m\{g + (\pi^2 n^2 r)/900\}$	
	$m(g + \pi nr)$	particle moving along a cir	, ,, ,	the distance covered s as
	$T = a s^2$. The force acting	구매 하는데 맛있다면 모든 아이를 하는데 없는 말이 하셨다면 하다 하는데 하는데 구매하게 되었다.	cie di Tadius R depends di	the distance covered 5 as
) 2 a s R	b) $2 a s [1 + s^2/R^2]^{1/2}$	c) 2 a s	d) $2 as^2/R$
	5)	nclined at an angle θ . Now		
tı	urns through an angle β.	Which of the following rela	ation is true	iged then the resultant
a	$1) \tan \frac{\alpha}{2} = \left(\frac{A-B}{A+B}\right)^2 \tan \frac{\theta}{2}$		b) $\tan \frac{\alpha}{2} = \left(\frac{A-B}{A+B}\right) \tan \frac{\theta}{2}$	
c	$\tan \frac{\alpha}{2} = \left(\frac{A-B}{A+B}\right)^2 \cot \frac{\theta}{2}$		d) $\tan \frac{\alpha}{2} = \left(\frac{A-B}{A+B}\right) \cot \frac{\theta}{2}$	
494. T	he resultant of two vector	ors of magnitudes $2A$ and $$	$\sqrt{2}A$ acting at an angle θ is $\sqrt{2}$	$\sqrt{10}A$. The correct value of θ
is				
a) 30°	b) 45°	c) 60°	d) 90°
		d at one end and carries a r		200 jang pang at a 1 mang pang at an ing 1 mag 1 .
	evolutions per <i>second</i> ar he string is	round the vertical axis thro	ugh the fixed end as showr	in figure , then tension in

a) ML

b) 2 ML

c) 4 ML

d) 16 ML

496. A projectile fired with initial velocity u at some angle θ has a range R. If the initial velocity be doubled at the same angle off projection, then the range will be

a) 2R

b) R/2

c) R

d) 4R

497. A helicopter is flying horizontally at an altitude of 2 km with a speed of 100 ms⁻¹. A packet is dropped from it. The horizontal distance between the point where the packet is dropped and the point where it hits the ground is $(g = 10 \text{ ms}^{-2})$

a) 2 km

b) 0.2 km

c) 20 km

d) 4 km

498. From an inclined plane two particles are projected with same speed at same angle θ , one up and other down the plane as shown in figure, which of the following statements is/are correct?

a) The time of flight of each particle is the same

b) The particles will collide the plane with same speed

c) Both the particles strike the plane perpendicularly

d) The particles will collide in mid air if projected simultaneously and time of flight of each particle is less than of collision

499. A fighter plane enters inside the enemy territory, at time t=0 with velocity $v_0=250~\rm ms^{-1}$ and moves horizontally with constant acceleration $a=20\rm ms^{-2}$ (see figure). An enemy tank at the border, spot the plane and fire shots at an angle $\theta=60^\circ$ with the horizontal and with velocity $u=600~\rm ms^{-1}$. At what altitude H of the plane it can be hit by the shot?

a) $1500\sqrt{3}$ m

b) 125 m

c) 1400 m

d) 2473 m

500. The vectors \vec{a} and \vec{b} are such that $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$. What is the angle between \vec{a} and \vec{b} ?

a) 0°

b) 90°

c) 60°

d) 180°

501. A boy playing on the roof of a 10 m high building throws a ball with a speed of 10 ms^{-1} at an angle of 30° with the horizontal. How far from the throwing point will the ball be at the height of 10 m from the ground?

 $(g = 10 \text{ ms}^{-2}, \sin 30^\circ = 1/2, \cos 30^\circ = \sqrt{3}/2)$

a) 5.20 m

b) 4.33 m

c) 2.60 m

d) 8.66 m

502. What is the value of linear velocity, if $\vec{\omega}=3\hat{\imath}-4\hat{\jmath}+\hat{k}$ and $\vec{r}=5\hat{\imath}-6\hat{\jmath}+6\hat{k}$

a) $6\hat{i} + 2\hat{j} - 3\hat{k}$

b) $-18\hat{i} - 13\hat{j} + 2\hat{k}$

c) $4\hat{i} - 13\hat{j} + 6\hat{k}$

d) $6\hat{\imath} - 2\hat{\jmath} + 2\hat{k}$

503. A vector \vec{A} when added to the vector $\vec{B} = 3\hat{\imath} + 4\hat{\jmath}$ yields a resultant vector that is in the positive y direction and has a magnitude equal to that of \vec{B} . Find the magnitude of \vec{A}

2)	1	n

- 504. Neglecting the air resistance, the time of flight of a projectile is determined by

c)
$$U = U_{vertical}^2 + U_{horizontal}^2$$

d)
$$U = U(U_{vertical}^2 + U_{horizontal}^2)^{1/2}$$

505. A particle is moving on a circular path of radius r with uniform velocity v. The change in velocity when the particle moves from P to Q is $(\angle POQ = 40^{\circ})$

- a) 2v cos 40°
- b) $2v \sin 40^{\circ}$
- c) 2v sin 20°
- d) 2v cos 20°
- 506. A bullet is fired with a velocity u making an angle of 60° with the horizontal plane. The horizontal component of the velocity of the bullet when it reaches the maximum height is
 - a) u

b) 0

- d) u/2
- 507. A body of mass 0.4 kg is whirled in a vertical circle making 2 rev/sec. If the radius of the circle is 2 m, then tension in the string when the body is at the top of the circle, is
 - a) 41.56 N
- b) 89.86 N
- d) 115.86 N
- 508. In a two dimensional motion of a particle, the particle moves from point A, position vector $\vec{\mathbf{r}}_1$. If the magnitudes of these vectors are respectively, r_1 =3 and r_2 = 4 and the angles they make with the x-axis are $\theta_1 = 75^{\circ}$ and 15°, respectively, then find the magnitude of the displacement vector

- b) $\sqrt{13}$
- c) 17

- d) √15
- 509. A ball rolls of the top of a stair way with a horizontal velocity $u \text{ ms}^{-1}$. If the steps are h metre and b metre wide, the ball hits the edge of nth step, the time taken by the ball is
 - a) $\frac{1}{gb}$

- 510. A coin placed on a rotating turn table just slips if it is placed at a distance of 8 cm from the centre. If angular velocity of the turn table is doubled, it will just slip at a distance of
 - a) 1 cm
- b) 2 cm
- c) 4 cm
- d) 8 cm
- 511. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground

b) h1

- 512. A ball is projected horizontally with a velocity of 5 m/s from the top of a building 19.6 m high. How long will the ball take to hit the ground
 - a) $\sqrt{2} s$
- b) 2 s

- c) $\sqrt{3}$ s
- d) 3 s

CLICK HERE

	~	-
-	٦	L
а	. 1	n

b)
$$K/\sqrt{2}$$

c)
$$K/2$$

525. Two forces, each of magnitude F, have a resultant of the same magnitude F. The angle between the two forces is

526. For a body moving in a circular path, a condition for no skidding if μ is the coefficient of friction, is

a)
$$\frac{mv^2}{r} \leq \mu mg$$

b)
$$\frac{mv^2}{r} \ge \mu mg$$

c)
$$\frac{v}{r} = \mu g$$

d)
$$\frac{mv^2}{r} = \mu mg$$

527. If the radius of curvature of the path of two particles of same masses are in the ratio 1:2, then in order to have constant centripetal force, their velocity, should be in the ratio of

b)
$$4:1$$

c)
$$\sqrt{2}:1$$

d)
$$1:\sqrt{2}$$

528. A car runs at a constant speed on a circular track of radius 100 m, taking 62.8 s for every circular lap. The average velocity and average speed for each circular lap is

b)
$$0.10 \text{ ms}^{-1}$$

- 529. A particle of mass M is moving in a horizontal circle of radius R with uniform speed V. When it moves from one point to a diametrically opposite point, its
 - a) Kinetic energy changes by $MV^2/4$
- b) Momentum does not change

c) Momentum changes by 2MV

- d) Kinetic energy changes by MV²
- 530. A ball is projected up an incline of 30° with a velocity of 30 ms⁻¹ at an angle of 30° with reference to the inclined plane from the bottom of the inclined plane. If $g = 10 \text{ms}^{-2}$, then the range on the inclined plane is
- b) 60 m
- c) 120 m
- d) 600 m
- 531. A particle is moving with a constant speed v in a circle. What is the magnitude of average after half rotation?

b)
$$2\frac{v}{\pi}$$

c)
$$\frac{v}{2}$$

- 532. A particle is moving in a circle of radius R in such a way that at any instant the normal and tangential components of its acceleration are equal. If its speed at t = 0 is v_0 , the time taken to complete the first revolution is

a)
$$\frac{R}{v_0}$$

b)
$$\frac{R}{v_0}(1-e^{-2\pi})$$
 c) $\frac{R}{v_0}e^{-2\pi}$

c)
$$\frac{R}{n}e^{-2\pi}$$

- 533. A particle is projected from the ground with an initial speed of v at an angle θ with horizontal. The average velocity of the particle between its point of projection and highest point of trajectory is

a)
$$\frac{v}{2}\sqrt{1+2\cos^2\theta}$$

b)
$$\frac{v}{2}\sqrt{1+\cos^2\theta}$$

c)
$$\frac{v}{2}\sqrt{1+3\cos^2\theta}$$

- d) $v\cos\theta$
- 534. Which of the following is the altitude-time graph for a projectile thrown horizontally from the top of the tower

- 535. A plumb line is suspended from a ceiling of a car moving with horizontal acceleration of a. What will be the angle of inclination with vertical?
 - a) $\tan^{-1}\left(\frac{a}{a}\right)$
- b) $\tan^{-1}\left(\frac{g}{a}\right)$
- c) $cas^{-1}\left(\frac{a}{a}\right)$
- d) cas⁻¹ $\left(\frac{g}{g}\right)$

- 536. Centripetal acceleration is
 - a) A constant vector

b) A constant scalar

c) A magnitude changing vector

- d) Not a constant vector
- $537. \vec{A} = 3\hat{i} \hat{j} + 7\hat{k}$ and $\vec{B} = 5\hat{i} \hat{j} + 9\hat{k}$ the direction cosine m of the vector $\vec{A} + \vec{B}$ is
 - a) Zero

- d) 5

538. A par	ticle is projected with	velocity $2\sqrt{gh}$ so that it i	ust clears two walls of equa	l height h, which are at a
			erval of passing between the	
				· -
a) $\frac{2h}{g}$		b) $\sqrt{\frac{2h}{g}}$	c) $\frac{n}{2}$	d) $2\sqrt{\frac{h}{g}}$
0		Y	AN A	√g
539. For v	what value of a , $\vec{A} = 2$	$\hat{i} + a\hat{j} + \hat{k}$ will be perpend	icular to $\vec{B} = 4\hat{\imath} - 2\hat{\jmath} - \hat{k}$	
a) 4		b) zero	c) 3	d) 1
			nstant speed v , its angular v	
a) v^2		b) vr	c) <i>v/r</i>	d) r/v
	59		a. If its velocity gets doubl	ed, find the ratio of
accel	eration after and befo			
a) 1	4	b) $\frac{1}{4}$: 2	c) 2:1	d) 4:1
542. A ma	n throws a ball vertic	ally upwards and it rises t	hrough 20 m and returns to	his hands. What was the
			e(T) it remained in the air?	
a) u	$= 10 \text{ ms}^{-1}$; $T = 2 \text{ s}$	b) $u = 10 \text{ ms}^{-1}$; $T = 4 \text{ s}$	c) $u = 20 \text{ ms}^{-1}$; $T = 2 \text{ s}$	d) $u = 20 \text{ ms}^{-1}$; $T = 4 \text{ s}$
543. A sto	ne tied to one end of r	ope and rotated in a circu	lar motion. If the string sud	denly breaks, then the ston
trave	ls			
a) in	perpendicular directi	on		
100000000000000000000000000000000000000	direction of centrifug			
	vards centripetal for	e		
	tangential direction	.1		
		ce, the time of flight of a p	rojectile is determined by	
a) $U_{\rm v}$			b) $U_{\text{horizontal}}$.1/2
	$=U_{\text{vertical}}^2+U_{\text{horizont}}^2$		d) $U = (U_{\text{vertical}}^2 + U_{\text{horizo}}^2)$	(T-1000000)
- Designation of the second	rando en marca de la frança de la companya de la c		orizontal with a speed of 10	
	tion of its velocity ma	kes an angle of 30° above	the horizontal. The speed of	of the particle at this instan
is				10
a) -5	ms ⁻¹	b) $5\sqrt{3} \text{ ms}^{-1}$	c) 5 ms^{-1}	d) $\frac{10}{\sqrt{3}}$ ms ⁻¹
V -			of length $1.96 m$ moving in a	V 0
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	얼마면 나 아이일은 다 아이트에서 아르는 아이를 맞았다면 하나 되었다면서 가지 않는 바다면서?	hat is the maximum speed v	
move		ion is more than 25 iv. w	nat is the maximum speed (	vitii winen the ban can be
a) 14		b) 3 m/s	c) 3.92 m/s	d) 5 m/s
	15	(15) N	turn of radius 30m if the co	
betw	een the tyres and the	road is 0.4?		
a) 10	.84 ms ⁻¹	b) 9.84 ms ⁻¹	c) 8.84 ms ⁻¹	d) 6.84 ms ⁻¹
548. Two	particles of equal mas	s are connected to a rope	AB of negligible mass such	that one is at end $A$ and
			om $B$ . The rope is rotated al	
7.77		78	er is (ignore effect of gravi	
a) 4		b) 1 : 4	c) 1:2	d) 1 : 3
	en an menor anno anno a different mora anno a <del>dil</del> mensi different a differ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	gth 1 m, is whirled in a hori	zontal circle with a
unifo		rads ⁻¹ . The tension of the	e string is (in newton)	1
a) 2		b) $\frac{1}{3}$	c) 4	d) $\frac{1}{4}$
550. A box			wicket-keeper. If the fricti	
		g on the ball at the position		
Boy	X			
	<b>-</b> 000	III		
		311		
Ĺ				

rotated a) Is independent of c) Decreases with inceptors 552. A body executing unit a) along the same direction of the same direction of the same of	the mass of the stone creasing mass of the stone iform circular motion has a rection her a string and is given a circular $\frac{v^2}{r}$ A and $\frac{v^2}{r}$ and $\frac{v^2}{r}$ the hole in $\frac{v}{r}$ . If the bullet is at $\frac{v}{r}$ is $\frac{v}{r}$ b) $\frac{v^2}{r}$	b) Is independent d) Decreases with at any instant its velocity b) in opposite directly d) not related to endar motion with velocity c) $\frac{v}{r^2}$ distance of 200 m. A bull	
<ul> <li>a) Is independent of c) Decreases with inceptode in the same disconnected in the same disconnected in the same disconnected in the acceleration a) \frac{v}{r}</li> <li>554. Two paper screens A in B is 40 cm below the velocity of the bullet a) 200 ms⁻¹</li> <li>555. A 100 kg car is moving</li> </ul>	creasing mass of the stone iform circular motion has a rection her a string and is given a circular $\frac{v^2}{r}$ A and $B$ are separated by a the hole in $A$ . If the bullet is at $A$ is $b) 400 \text{ ms}^{-1}$	d) Decreases with at any instant its velocity b) in opposite directly d) not related to end at motion with velocity $c) \frac{v}{r^2}$ distance of 200 m. A bull a travelling horizontally a	increasing length of the string vector and acceleration vector ection each other $v$ in radius $r$ . The magnitude of $d)\frac{v^2}{r^2}$ let pierces $A$ and then $B$ . The hole
c) Decreases with ine 552. A body executing unit a) along the same direction c) normal to each other street of the acceleration a) $\frac{v}{r}$ 554. Two paper screens $A$ in $B$ is 40 cm below the velocity of the bullet a) 200 ms ⁻¹ 555. A 100 $kg$ car is moving the same street of the same street o	creasing mass of the stone iform circular motion has a rection her a string and is given a circular $\frac{v^2}{r}$ A and $B$ are separated by a the hole in $A$ . If the bullet is at $A$ is $b) 400 \text{ ms}^{-1}$	d) Decreases with at any instant its velocity b) in opposite directly d) not related to end at motion with velocity $c) \frac{v}{r^2}$ distance of 200 m. A bull a travelling horizontally a	increasing length of the string vector and acceleration vector ection each other $v$ in radius $r$ . The magnitude of $d)\frac{v^2}{r^2}$ let pierces $A$ and then $B$ . The hole
552. A body executing unital along the same directly normal to each other street of the acceleration  a) $\frac{v}{r}$ 554. Two paper screens A in B is 40 cm below the velocity of the bullet a) 200 ms ⁻¹ 555. A 100 kg car is moving along the same of the same	iform circular motion has a rection her a string and is given a circular b) $\frac{v^2}{r}$ A and B are separated by a the hole in A. If the bullet is at A is  b) 400 ms ⁻¹	b) in opposite directly b) in opposite directly d) not related to end alar motion with velocity c) $\frac{v}{r^2}$ distance of 200 m. A bull travelling horizontally a	vector and acceleration vector ection each other $v$ in radius $r$ . The magnitude of $d) \frac{v^2}{r^2}$ let pierces $A$ and then $B$ . The hole
a) along the same din c) normal to each other states of the same din c) normal to each other states of the acceleration a) $\frac{v}{r}$ 554. Two paper screens $A$ in $B$ is 40 cm below the velocity of the bullet a) 200 ms ⁻¹ 555. A 100 $kg$ car is moving the same same states of the same din same states of the same din same states of the same din same states of the same sta	rection her a string and is given a circular b) $\frac{v^2}{r}$ A and B are separated by a the hole in A. If the bullet is at A is b) 400 ms ⁻¹	b) in opposite directly d) not related to explain motion with velocity c) $\frac{v}{r^2}$ distance of 200 m. A bull travelling horizontally a	ection each other $v$ in radius $r$ . The magnitude of $ \frac{v^2}{r^2} $ let pierces $A$ and then $B$ . The hole
c) normal to each other control of the acceleration a) $\frac{v}{r}$ 554. Two paper screens $A$ in $B$ is 40 cm below the velocity of the bullet a) 200 ms ⁻¹ 555. A 100 $kg$ car is moving the control of the section of	her a string and is given a circular b) $\frac{v^2}{r}$ A and B are separated by a the hole in A. If the bullet is at A is  b) 400 ms ⁻¹	d) not related to e alar motion with velocity $c) \frac{v}{r^2}$ distance of 200 m. A bull travelling horizontally a	each other $v$ $v$ in radius $r$ . The magnitude of $\mathrm{d})\frac{v^2}{r^2}$ let pierces $A$ and then $B$ . The hole
553. A body is tided with the acceleration  a) $\frac{v}{r}$ 554. Two paper screens A in B is 40 cm below to velocity of the bullet  a) 200 ms ⁻¹ 555. A 100 kg car is movi	a string and is given a circular b) $\frac{v^2}{r}$ A and B are separated by a the hole in A. If the bullet is at A is b) 400 ms ⁻¹	ular motion with velocity $c) rac{v}{r^2}$ distance of 200 m. A bull travelling horizontally a	$v$ in radius $r$ . The magnitude of $\mathrm{d})\frac{v^2}{r^2}$ let pierces $A$ and then $B$ . The hole
the acceleration  a) $\frac{v}{r}$ 554. Two paper screens $A$ in $B$ is 40 cm below the velocity of the bullet  a) 200 ms ⁻¹ 555. A 100 $kg$ car is movi	b) $\frac{v^2}{r}$ A and B are separated by a the hole in A. If the bullet is at A is b) 400 ms ⁻¹	c) $\frac{v}{r^2}$ distance of 200 m. A bull travelling horizontally a	d) $rac{v^2}{r^2}$ let pierces $A$ and then $B$ . The hole
554. Two paper screens $A$ in $B$ is 40 cm below to velocity of the bullet a) 200 ms ⁻¹ 555. A 100 $kg$ car is moving the second seco	A and $B$ are separated by a the hole in $A$ . If the bullet is at $A$ is  b) 400 ms ⁻¹	distance of 200 m. A bull s travelling horizontally a	let pierces $A$ and then $B$ . The hole
554. Two paper screens $A$ in $B$ is 40 cm below to velocity of the bullet a) 200 ms ⁻¹ 555. A 100 $kg$ car is moving the same street and the same street are same street and the same street and the same street are same street are same street and the same street are sa	A and $B$ are separated by a the hole in $A$ . If the bullet is at $A$ is  b) 400 ms ⁻¹	distance of 200 m. A bull s travelling horizontally a	let pierces $A$ and then $B$ . The hole
in $B$ is 40 cm below to velocity of the bullet a) 200 ms ⁻¹ 555. A 100 $kg$ car is moving	the hole in $A$ . If the bullet is at $A$ is b) 400 ms ⁻¹	s travelling horizontally a	
velocity of the bullet a) $200 \text{ ms}^{-1}$ 555. A $100 kg$ car is movi	at $A$ is b) 400 ms ⁻¹		at the time of hitting <i>A</i> , then the
555. A $100kg$ car is movi		c) $600 \text{ ms}^{-1}$	
and the property of the confidence of the property of the confidence of the confiden	ng with a maximum veloci	C) 000 III3	d) $700 \text{ ms}^{-1}$
		ty of 9 $m/s$ across a circu	ular track of radius 30 m. The
maximum force of fr	iction between the road an	d the car is	
a) 1000 N	b) 706 N	c) 270 N	d) 200 N
556. The second's hand of	f a watch has length 6 cm. S	Speed of end point and m	nagnitude of difference of velocitie
at two perpendicular	r positions will be		
a) 6.28 and 0 mm/s	b) 8.88 and 4.44 mm	a/s c) 8.88 and 6.28 n	nm/s d) 6.28 and 8.88 mm/s
557. A force of (7î + 6k) N	N makes a body move on a	rough plane with a veloc	city of $(3\hat{j} + 4\hat{k})$ ms ⁻¹ . Calculate the
power in watt	<u>,</u>		
a) 24	b) 34	c) 21	d) 45
558. A body is moving wit	th a certain velocity in a cir	cular path. Now, the bod	ly reverses its direction, then
a) the magnitude of	centripetal force remains s	ame	
b) the direction of ce	entripetal force remains sai	me	
c) the direction of co	entripetal acceleration rem	iains same	
d) the of centripetal	force does not change		
559. A tube of length <i>L</i> is:	filled completely with an ir	ncompressible liquid of n	nass M and closed at both the
ends. The tube is the	n rotated in a horizontal p	lane about one of its end	s with a uniform angular velocity
$\omega$ . The force exerted	by the liquid at the other e	end is	
a) $\frac{ML\omega^2}{2}$	b) $ML\omega^2$	c) $\frac{ML\omega^2}{4}$	d) $\frac{ML^2\omega^2}{2}$
4		<b>T</b>	4
	round of radius 50 m with		•
a) 250 N	b) 750 N	c) 1000 N	d) 1200 N
			00 N at 45° to the ground. What is
the vertical force of t	the roller on the ground, if	he pushed the roller? (g	$= 10 \text{ms}^{-2}$ )
a) 70 N	b) 200 N	c) 560 N	d) 840 N
^{562.} A particle is projecte	ed with speed $v$ at an angle	$\theta \left(0 < \theta < \frac{\pi}{2}\right)$ above the	horizontal from a height ${\cal H}$ above
the ground. If $v = sp$			e taken by particle to reach
ground, then	W 8		
	decreases and t increases		
59	ncreases and t increases		
1511	remains same and t increas		
d) As $\theta$ increases, $v$ r	remains same and t decrea	ses	

563. Figure shows four paths for a kicked football. Ignoring the effects of air on the flight, rank the paths according to initial horizontal velocity component, highest first





b) 2, 3, 4, 1



d) 4, 3, 2, 1

564. A small block is shot into each of the four tracks as shown below. Each of the tracks rises to the same height. The speed with which the block enters the track is the same in all cases. At the highest point of the track, the normal reaction is maximum in





b)





d)



565. A sphere is suspended by a thread of length *l*. The minimum horizontal velocity which has to be imparted to the sphere for it to reach the height of suspension is

a) 
$$2\sqrt{gR}$$

b) 
$$\sqrt{2gl}$$

566. The torque of a force  $\vec{F} = -3\hat{\imath} + \hat{\jmath} + 5\hat{k}$  acting at a point is  $\vec{\tau}$ . If the position vector of the point is  $7\hat{\imath} + \hat{\jmath} + \hat{k}$ , then  $\vec{\tau}$  is

a) 
$$7\hat{i} - 8\hat{j} + 9\hat{k}$$

b) 
$$14\hat{i} - \hat{j} + 3\hat{k}$$

c) 
$$2\hat{i} - 3\hat{j} + 8\hat{k}$$

d) 
$$14\hat{i} - 38\hat{j} + 16\hat{k}$$

567. The coordinates of a moving particle at any time 't' are given by  $x = \alpha t^3$  and  $y = \beta t^3$ . The speed of the particle at time t' is given by

a) 
$$\sqrt{\alpha^2 + \beta^2}$$

b) 
$$3t\sqrt{\alpha^2 + \beta^2}$$

c) 
$$3t^2\sqrt{\alpha^2+\beta^2}$$

d) 
$$t^2\sqrt{\alpha^2+\beta^2}$$

568. A car when passes through a convex bridge exerts a force on it which is equal to

a) 
$$Mg + \frac{Mv^2}{r}$$

b) 
$$\frac{Mv^2}{r}$$

d) None of these

569. The acceleration of a vehicle travelling with speed of 400ms⁻¹ as it goes round a curve of radius 160 m, is

d) 
$$1 \text{ ms}^{-2}$$

570. A cyclist turns around a curve at 15 miles/hour. If the turns at double the speed, the tendency to overturn is

571. A force is inclined at 60° to the horizontal. If its rectangular component in the horizontal direction is 50 N, then magnitude of the force in the vertical direction is

572. A body of mass m is moving with a uniform speed v along a circle of radius r, what is the average acceleration in going from A to B?



a) 
$$2v^2/\pi r$$

b) 
$$2\sqrt{2}v^{2}/\pi r$$

c) 
$$v^2/\pi r$$

573. Two particles A and B are projected with same speed so that the ratio of their maximum heights reached is 3: 1. If the speed of A is doubled without altering other parameters, the ratio of the horizontal ranges attained by A and B is

c) 
$$4:1$$

574. What should be the angular velocity of earth so that a body on its equator is weightless?





	1		_1
al	_	- rad	S -1
,	onne		-

b) 
$$\frac{1}{8}$$
 rad s⁻¹

c) 
$$\frac{1}{800}$$
 rad s⁻¹ d)  $\frac{1}{80}$  rad s⁻¹

d) 
$$\frac{1}{80}$$
 rad s⁻¹

- 575. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If  $T_{\text{max}}/T_{\text{min}} = 2$ , then  $v^2/rg$  is

c) 3

- d) 4
- 576. A chain of 125 links is 1.25 m long and has mass of 2 kg with the ends fastened together. It is set for rotating at 50 revs⁻¹, centripetal force on each links is
  - a) 3.14 N
- b) 0.314 N
- d) None of these
- 577. At the height 80 m, an aeroplane is moving with 150 ms⁻¹. A bomb is dropped from it, so as to hit a target. At what distance from the target should bomb be dropped?  $(g = 10 \text{ ms}^{-2})$ 
  - a) 605.3 m
- b) 600m
- d) 230m
- 578. Given  $\vec{A} = 4\hat{i} + 6\hat{j}$  and  $\vec{B} = 2\hat{i} + 3\hat{j}$ . Which of the following is correct?

a) 
$$\vec{A} \times \vec{B} = \vec{0}$$

b) 
$$\vec{A} \cdot \vec{B} = 24$$

c) 
$$\frac{|\vec{A}|}{|\vec{B}|} = \frac{1}{2}$$

d)  $\vec{A}$  and  $\vec{B}$  are anti-parallel

- 579. If  $\vec{A} = 2\hat{i} + 3\hat{j} + 6\hat{k}$  and  $\vec{B} = 3\hat{i} 6\hat{j} + 2\hat{k}$ , then vector perpendicular to both  $\vec{A}$  and  $\vec{B}$  has magnitude ktimes that  $(6\hat{i} + 2\hat{j} - 3\hat{k})$ . That k is equal to
  - a) 1

b) 4

c) 7

- d) 9
- 580. A bob of mass M is suspended by a massless string of length L. The horizontal velocity V at position A is just sufficient to make it reach the point B. The angle  $\theta$  at which the speed of the bob is half of that at A, satisfies



- b)  $\frac{\pi}{4} < \theta < \frac{\pi}{4}$  c)  $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$
- d)  $\frac{3\pi}{4} < \theta < \pi$
- 581. A body is projected with initial velocity of  $(8\hat{i} + 6\hat{j})$ ms⁻¹. The horizontal range is
  - a) 9.6 m
- b) 14 m
- c) 50 m
- d) None of these
- 582. A particle of mass m attracted with a string of length l is just revolving on the vertical circle without slacking of the string. If  $v_A$ ,  $v_B$  and  $v_D$  are speed at position A, B and D then



a)  $v_B > v_D > v_A$ 

b) Tension in string at D = 3 mg

c)  $v_D = \sqrt{3gl}$ 

- d) All of the above
- 583. An aeroplane flying horizontally with a speed of 360 kmh⁻¹ releases a bomb at a height of 490 m from the ground. When will the bomb strike the ground?
  - a) 8 s

b) 6 s

c) 7 s

- d) 10 s
- 584. An aeroplane flying at a velocity of 900 kmh⁻¹ loops the loop. If the maximum force pressing the pilot against the seat is five times its weight, the loop radius should be
  - a) 1594 m
- b) 1402 m
- c) 1315 m
- d) 1167 m
- 585. In figure, a particle is placed at the highest point A of a smooth sphere of radius r. It is given slight push, and it leaves the sphere at B, at a depth h vertically below A such that h is equal to







when rotational speed is

a) 100 rpm



c) 12.5 rpm

597. A coin is placed on a gramophone record rotating at a speed of 45 rpm. It flies away when the rotational

b) 25 rpm

speed is 50 rpm. If two such coins are placed over the other on the same record, both of them will fly away



d) 50 rpm

revolution. The maximu	tions/min. The other end of m tension that the string can	the string is fixed at the cen n bear is approximately	ntre of the circle of
a) 8.76 N	b) 8.94 N	c) 89.42 N	d) 87.64 N
599. A cyclist goes round a ci vertical, will be a) 45°	rcular path of circumference b) 40°	e 34.3 $m$ in $\sqrt{22}$ sec. the ang	gle made by him, with the
AND AND ADDRESS OF THE PARTY OF			A DESCRIPTION OF THE PROPERTY
600. A boy throws a ball upw $3\text{ms}^{-1}$ to the left. The an $(\text{use } g = 10 \text{ ms}^{-2})$ a) $\tan^{-1}(0.4)$	gel $\theta$ at which the ball must b) $\tan^{-1}(0.2)$	be thrown so that the ball r	
		그리가를 하시면 있다. [10] 이 아이들이 아이를 하시다니다.	
601. The velocity of projection a) 4.9 m	b) 9.6 m	(61 + 81) ms ⁻¹ . The horizon c) 19.6 m	ital range of the projectile is
602. If a body $A$ of mass $M$ is	thrown with velocity $V$ at an	angle of 30° to the horizon	ntal and another body $B$ of
59	n with the same speed at an	( <del>5</del> )	
a) 1:3	b) 1:1	c) $1:\sqrt{3}$	d) $\sqrt{3}$ : 1
603. Two projectiles thrown	from the same point at angle	- 3	izontal attain the same
height. The ratio of their	initial velocities is		
a) 1	b) 2	a) /5	d) $\frac{1}{\sqrt{3}}$
		c) $\sqrt{3}$	$\sqrt{3}$
a) 5 N 605. A bob of mass M is suspense sufficient to make it read	is 500 kg, find the net force b) 1000 N ended by a massless string och the point $\it B$ . The angle $\it  heta$ a	acting on the car c) $500\sqrt{2}$ N If length <i>L</i> . The horizontal v t which the speed of the bolonger.	d) $500/\sqrt{2}$ N elocity $v$ at position $A$ is jus b is half of that at $A$ , satisfies
a) $\theta = \frac{\pi}{4}$	b) $\frac{\pi}{4} < \theta < \frac{\pi}{2}$	c) $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$	$d)\frac{3\pi}{4} < \theta < \pi$
606. A stone is thrown with a	velocity $v$ making an angle	$\theta$ with the horizontal. At so	me instant, its velocity $\emph{V}$ is
perpendicular to the init	tial velocity $v$ . Then $V$ is		
a) $v \sin \theta$	b) $v \cos \theta$	c) $v \tan \theta$	d) $v \cot \theta$
607. A cycle wheel of radius (	0.4 m completes one revolut	ion in one second then the	acceleration of a point on
the cycle wheel will be			
a) $0.8  m/s^2$	b) $0.4  m/s^2$	c) $1.6 \pi^2 m/s^2$	d) $0.4 \pi^2 m/s^2$
608. If $\vec{A}_1$ and $\vec{A}_2$ are two no			
$\vec{A}_2$ ) is			
a) 1	b) 1/2	c) 3/2	d) 2
609. A body of mass $m$ is pro-	jected with a speed u makin	g an angle $\alpha$ with the horizon	ontal. The change in
momentum suffered by	the body along he y-axis bet	ween the starting point and	d the highest point of its
path will be			

b)  $mu \sin \alpha$ 



c)  $3 mu \sin \alpha$ 

d) mu

a)  $mu \cos \alpha$ 

610.	For a particle in uniform circular motion, thee accele	eration $\vec{a}$ at a point $P(R, \theta)$	on the circle of radius R is
	(Here $\theta$ is measured from the x-axis)		
	a) $\frac{v^2}{R}\hat{\imath} + \frac{v^2}{R}\hat{\jmath}$	h) $-\frac{v^2}{\cos\theta}$ $\cos\theta$ $\hat{i} + \frac{v^2}{\sin\theta}$ $\sin\theta$	
	$R \stackrel{\leftarrow}{R} R$	$R = \frac{1}{R} \cos \theta t + \frac{1}{R} \sin \theta f$	
	c) $-\frac{v^2}{R}\sin\theta \hat{\imath} + \frac{v^2}{R}\cos\theta \hat{\jmath}$	b) $-\frac{v^2}{R}\cos\theta \hat{\imath} + \frac{v^2}{R}\sin\theta \hat{\jmath}$ d) $-\frac{v^2}{R}\cos\theta \hat{\imath} - \frac{v^2}{R}\sin\theta \hat{\jmath}$	1
	R R A particle moves in a circular path with decreasing s	и и	
011.	a) Angular momentum remains constant	speed. Choose the correct si	tatement.
	b) Acceleration (a) is towards the center		
	c) Particle moves in a spiral path with decreasing ra	dius	
	d) The direction of angular momentum remains con-		
612.	The string of a pendulum of length $l$ is displaced thro		and released. Then the
	minimum strength of the string in order to withstan	d the tension as the pendul	um passes through the
	mean position is		
	a) mg b) 6 mg	c) 3 mg	d) 5 mg
613.	The maximum speed of a car on a road-turn of radiu	s 30 m, if the coefficient of	friction between the tyres
	and the road is 0.4, will be	8 1212101 NO	502 \$70250 12
		c) 8.84 m/sec	
	A particle moves in the $x-y$ plane with velocity $v_x$		asses through the pointy
	x = 14 and $y = 4$ at $t = 2s$ , find the equation $(x - y)$		
	a) $x = y^2 - y + 2$	b) $x = 2y^2 + 2y - 3$	1
	c) $x = 3y^2 + 5$	d) Can not be found from	
615.	A particle of mass $m$ is tied to one end of a string horizontal circular path with speed $v$ . The work don	(175)	273
	b) $\left(\frac{m\nu}{l}\right) 2\pi l$	c) $\left(\frac{mv^2}{l}\right)\pi l$	d) $\left(\frac{mv}{l}\right)l$
616	A body is projected with a speed $u$ m/s at an angle $\beta$	` /	` /
	point is $\frac{3}{4}$ th of the initial energy. The values of $\beta$ is	with the horizontal. The K	metic energy at the ingliese
		-) (00	1) 1200
	a) 30° b) 45° A car takes a turn around a circular curve. If it turns	c) 60°	d) 120°
617.	a) Halved b) Doubled		
618	Galileo writes that for angles of projection of a proje	- 15 15 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
010.	ranges described by the projectile are in the ratio of	사람이 없었다면서 하면 하면 하면 하는 것이 되었다. 그리아 아니다 그렇게 다 그렇게 다 그리아 다 그리아 다 그리아 다 그리아 다 그리아 하다는 것이다.	a (15 0), the horizontal
	a) 2:1 b) 1:2	c) 1:1	d) 2:3
619.	A particle revolves around a circular path. The accel-	40. M. 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 17	10 <b>3</b> (0 11 500
	a) Along the circumference of the circle	b) Along the tangent	
	c) Along the radius	d) Zero	
620.	A fan is making $600$ revolutions per $minute$ . If after	some time it makes 1200 r	evolutions per minute, then
	increase in its angular velocity is		
	a) $10 \pi rad/sec$ b) $20 \pi rad/sec$	c) 40 π rad/sec	d) $60 \pi rad/sec$
621.	A stone of mass 16 $kg$ is attached to a string 144 $m$ l		
	maximum tension the string can withstand is 16 Ner	<i>wton</i> . The maximum veloci	ty of revolution that can be
	given to the stone without breaking it, will be	-> 14 ···1	J) 121
622	a) $20 ms^{-1}$ b) $16 ms^{-1}$	c) 14 ms ⁻¹	d) $12 ms^{-1}$
622.	A wheel completes 2000 revolutions to cover the 9.5 a) 1.5 m b) 1.5 cm	c) 7.5 cm	d) 7.5 m
623	Two tall buildings are 40 m apart. With what speed		
OLU.	m above the ground in one building, so that it will er		
	a) 5 ms ⁻¹ b) 8 ms ⁻¹	c) 10 ms ⁻¹	d) 16 ms ⁻¹
	10 <b>₹</b> (10 17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	N 2. ■ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	±3. <b>4</b> 1 500000000000000000000000000000000000

624. Two	stones are projected	with same velocity $\emph{v}$ at an	angle $\theta$ and $(90^{\circ} - \theta)$ . If $H$	and $H_1$ are greatest heights
in th	ie two paths, what is t	he relation between R, H a	nd $H_1$ ?	
a) R	$=4\sqrt{HH_1}$	b) $R = \sqrt{HH_1}$	c) $R = 4HH_1$	d) None of these
625. The	angular speed of a fly	wheel making 120 revolu	tions/minute is	
a) 2:	π rad/s	b) $4\pi^2 rad/s$	c) π rad/s	d) $4\pi rad/s$
626. The	horizontal range is fo	ur times the maximum heig	ght attained by a projectile.	The angle of projection is
a) 9	0°	b) 60°	c) 45°	d) 30°
627. A ve	ctor $\overrightarrow{F_1}$ is along the po	sitive Y-axis. If its vector p	roduct with another vector	$\overrightarrow{F_1}$ is zero, then $\overrightarrow{F_2}$ could
be		aktropin farti för stolerin — Rich ette kottol på för årsket i 1000 till förekklisten. ♣i		a distrib ^{ili} i distribili di Salat di
a) 4	ĵ	b) $\hat{j} + \hat{k}$	c) $\hat{j} - \hat{k}$	d) -4î
628. For	a projectile the ratio o		to the square of time of fli	ght is $(g = 10 \text{ ms}^{-1})$
a) 5	[2011년] 전 :	b) 5:2	c) 5:4	d) 1:1
		es of two forces acting at a p	point is 16 N. the resultant	of these forces is
			of 8 N. If the smaller force is	
1000	e of x is			52
a) 2	N	b) 4 N	c) 6 N	d) 7 N
630. For	an object thrown at 45	5° to horizontal, the maxim	um height $(H)$ and horizon	ital range $(R)$ are related as
a) <i>R</i>	= 16 <i>H</i>	b) $R = 8H$	c) $R = 4H$	d) $R = 2H$
631. A gr	amophone disc is set i	revolving in a horizontal pl	ane and reaches a steady st	tate of motion of two
revo	olutions per second. It	is found that a small coin p	olaced on the disc will rema	in there if its centre is not
mor	e than 5 cm from the a	axis of rotation; the coeffici	ent of friction between the	coin and the disc is
a) 0.	.2	b) 0.4	c) 0.6	d) 0.8
632. A ho	ollow sphere has radiu	is 6.4 <i>m</i> . Minimum velocity	required by a motor cyclis	t at bottom to complete the
circl	e will be			
a) 1	$7.7 \; m/s$	b) 10.2 m/s	c) 12.4 m/s	d) 16.0 m/s
633. If A	$\vec{k} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{B} = 3\hat{i}$	$=4\hat{i}+3\hat{j}+2\hat{k}$ , then angle b	etween $\vec{A}$ and $\vec{B}$ is	
a) si	$n^{-1}(25/29)$	b) $\sin^{-1}(29/25)$	c) $\cos^{-1}(25/29)$	d) $\cos^{-1}(29/25)$
634. A cu	rved road of diameter	1.8 km is banked so that r	o friction is required at a s	peed of $30 \text{ ms}^{-1}$ . What is
the l	banking angle?			
a) 6	0	b) 16°	c) 26°	d) 0.6°
635. An a	eroplane moving hori	izontally with a speed of 72	20 km/h drops a food pock	et, while flying at a height
of 39	96.9 m. The time take	n by a food pocket to reach	the ground and its horizon	ital range is (Take $g=$
9.81	$n/sec^2$ )			
a) 3	sec and 2000 m	b) 5 sec and 500 m	c) 8 sec and 1500 m	d) 9 sec and 1800 m
636. If re	tardation produced by	y air resistance of projectil	e is one-tenth of acceleration	on due to gravity, the time
to re	each maximum height			
a) D	ecreases by 11 percer	nt	b) Increases by 11 percen	t
c) D	ecreases by 9 percent		d) Increases by 9 percent	
637. A bo	dy crosses the topmo	st point of a vertical circle	with critical speed. Its cent	ripetal acceleration, when
the s	string is horizontal wi	ll be		
a) 6	g	b) 3 g	c) 2 g	d) <i>g</i>
638. In th	ne above question, the	percentage increase in the	time of flight of the projec	tile will be
a) 5		b) 10%	c) 15%	d) 20%
639. An a	eroplane moving hori	izontally at a speed of 200	ms $^{-1}$ and at a height of 8 $ imes$	10 ³ m is to drop a bomb on
a tar	get. At what horizont	al distance from the target	should the bomb be release	ed? (Take $g = 10 \text{ ms}^{-2}$ )
410000000000000000000000000000000000000	124 m	b) 8714 m	c) 8000 m	d) 7234 m
640. Traj	ectories of two projec	tiles are shown in figure. L	et $T_1$ and $T_2$ be the time per	iods and $u_1$ and $u_2$ their
spee	eds of projection. Ther	1		

CLICK HERE >>>





653. A car is moving rectilinearly on a horizon	7	
observes that an insect S is crawling up t		If $\theta$ is the inclination of the
screen with the horizontal the accelerati		
	b) Along the horizor	
3	d) Perpendicular to	· Z
654. A projectile can have the same range <i>R</i> for		
the two cases, then the product of the tw	o times of flights is directly propo	ortional to
a) $\frac{1}{R^2}$ b) $\frac{1}{R}$	c) R	d) R ²
655. Three particles <i>A, B</i> and <i>C</i> are projected		e initial speeds making
angles30°, 45° and 60° respectively with	70	
a) A,B and Chave unequal ranges	the northoniany. Which of the for	nowing statements is correct.
b) Range of $A$ and $C$ are less than that of	В	
c) Range of A and C are equal and great		
d) A,B and C have equal ranges	THE THE STREET OF THE STREET	
656. A projectile moves from the ground such	that its horizontal displacement	is $x = Kt$ and vertical
displacement is $y = Kt(1 - \alpha t)$ , where $K$		
and maximum height attained (Ymax) its		0 ()
and maximum height attained $(Y_{\text{max}})$ its a) $T = \alpha$ , $Y_{\text{max}} = \frac{K}{2\alpha}$ b) $T = \frac{1}{\alpha}$ , $Y_{\text{max}}$	2K $1 K$	$\frac{1}{K}$ $\frac{1}{K}$ $K$
a) $I = \alpha$ , $I_{\text{max}} = \frac{1}{2\alpha}$ b) $I = \frac{1}{\alpha}$ , $I_{\text{max}}$	$x = \frac{1}{\alpha}$ $C = \frac{1}{\alpha}, r_{\text{max}} = \frac{1}{6\alpha}$	$I = \frac{1}{\alpha}, I_{\text{max}} = \frac{1}{4\alpha}$
657. A man standing on the roof of a house of	: 100 Per 10	
particle horizontally with the same veloc	city $u$ . The ratio of their velocities	when they reach the earth's
surface will be		
a) $\sqrt{2gh + u^2}$ : u b) 1:2	c) 1:1	d) $\sqrt{2gh+u^2}$ : $\sqrt{2gh}$
658. The force required to keep a body in unit	form circular motion is	
a) Centripetal force b) Centrifugal	force c) Resistance	d) None of the above
659. A projectile is fired with a velocity $v$ at ri	ght angle to the slope which is in	clined at an angle θ with the
horizontal. What is the time of flight?		
a) $\frac{2v^2}{g} \tan \theta$ b) $\frac{v^2}{g} \tan \theta$	$(2v^2)$ sec $\theta$	d) $\frac{2v^2}{tan}$ tan Asaca
	477 / Carlotte	1長公
660. One o the rectangular components of a v	elocity of $60 \text{kmh}^{-1}$ is $30 \text{ kmh}^{-1}$ .	The other rectangular
component is		
a) $30 \text{ kmh}^{-1}$ b) $30 \sqrt{3} \text{ kmh}$	c) $30\sqrt{2} \text{ kmh}^{-1}$	d) Zero
661. A ball of mass $0.1 kg$ is suspended by a s	tring. It is displaced through an a	ngle of 60° and left. When the
ball passes through the mean position, the	ne tension in the string is	
a) 19.6 <i>N</i> b) 1.96 <i>N</i>	c) 9.8 N	d) Zero
662. The vectors $2\hat{\imath} + 3\hat{\jmath} - 2\hat{k}$ , $5\hat{\imath} + a\hat{\jmath} + \hat{k}$ and	$-\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ are coplanar when	a is
a) -9 b) 9	c) -18	d) 18
663. The centripetal acceleration of a body m		- 19 200 : 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10
a) 98.5 ms ⁻² b) 198.5 ms ⁻		d) 985.9 ms $^{-2}$
664. An electric fan has blades of length 30 cm		ion. If the fan is rotating at 120
rpm, the acceleration of a point on the ti		
a) $1600 \text{ ms}^{-2}$ b) $47.4 \text{ ms}^{-2}$	c) 23.7 ms ⁻²	d) $50.55 \text{ ms}^{-2}$
665. A bucket full of water is revolved in verti		uld be the maximum time-period
of revolution so that the water doesn't fa		745 87
a) 1 sec b) 2 sec	c) 3 <i>sec</i>	d) 4 sec
666. A point <i>P</i> moves in counter-clockwise di		1,577
P is such that it sweeps out length $s = t^3$		in second. The radius of the path
is 20 m. The acceleration of $P$ when $t=2$	s is nearly	



a)  $13 \text{ ms}^{-2}$ 

b)  $12 \text{ ms}^{-2}$ 

c)  $7.2 \text{ ms}^{-2}$ 

d)  $14 \text{ ms}^{-2}$ 

667. A boy is hanging from a horizontal branch of a tree. The tension in the arms will be maximum when the angle between the arms is

a) 0°

b) 60°

c) 90°

d) 120°

668. An aeroplane is flying at a constant horizontal velocity of 600 km/hr at an elevation of 6 km towards a point directly above the target on the earth's surface. At an appropriate time, the pilot releases a ball so that it strikes the target at the earth. The ball will appear to be falling

a) On a parabolic path as seen by pilot in the plane

b) Vertically along a straight path as seen by an observer on the ground near the target

c) On a parabolic path as seen by an observer on the ground near the target

d) On a zig-zag path as seen by pilot in the plane

669. A coin, placed on a rotating turn-table slips, when it is placed at a distance of 9 cm from the centre. If the angular velocity of the turn-table is tripled, it will just slip, if its distance from the centre is

a) 27 cm

b) 9 cm

c) 3 cm

670. A ball is projected with kinetic energy E at an angle of 45° to the horizontal. At the highest point during its flight, its kinetic energy will be

a) Zero

b)  $E/_2$ 

c)  $E/\sqrt{2}$ 

671. A boy on a cycle pedals around a circle of 20 metres radius at a speed of 20 metres/sec. The combined mass of the boy and the cycle is 90 kg. The angle that the cycle makes with the vertical so that it may not fall is  $(g = 9.8 \, m/sec^2)$ 

a) 60.25°

b) 63.90°

c) 26.12°

672. A stone of mass 1 kg tied to a light inextensible string of length  $L = \frac{10}{3} m$  is whirling in a circular path of radius L in a vertical plane. If the ratio of the maximum tension in the string to the minimum tension in the string is 4 and if g is taken to be  $10m/\sec^2$ , the speed of the stone at the highest point of the circle is

a) 20m/sec

b)  $10\sqrt{3}m/sec$ 

c)  $5\sqrt{2}m/sec$ 

d) 10m/sec

673. A stone is tied at one end of a 5m long string and whirled in a vertical circle. The minimum speed required to just cross the topmost position is

a)  $5 \text{ ms}^{-1}$ 

b)  $7 \text{ ms}^{-1}$ 

c)  $57 \text{ ms}^{-1}$ 

674. If  $\vec{P}=4\hat{i}-2\hat{j}+6\hat{k}$  and  $\vec{Q}=\hat{i}-2\hat{j}-3\hat{k}$ , then the angle which  $\vec{P}+\vec{Q}$  makes with x-axis is a)  $\cos^{-1}\left(\frac{3}{\sqrt{50}}\right)$  b)  $\cos^{-1}\left(\frac{4}{\sqrt{50}}\right)$  c)  $\cos^{-1}\left(\frac{5}{\sqrt{50}}\right)$  d)  $\cos^{-1}\left(\frac{12}{\sqrt{50}}\right)$ 

675. A particle is moving in a circle of radius R with constant speedv. If radius is doubled, then its centripetal force to keep the same speed gets

a) twice as great as before

b) half

c) one-fourth

d) remains constant

676. The maximum height attained by a projectile is increased by 10% by increasing its speed of projection, without changing the angle of projection. The percentage increase in the horizontal range will be

b) 10%

c) 15%

d) 20%

677. A proton of mass  $1.6 \times 10^{-27} kg$  goes round in a circular orbit of radius 0.10 m under a centripetal force of  $4 \times 10^{-13}$  N. then the frequency of revolution of the proton is about





680.		$2\hat{j}) \times 10^5 \text{ms}^{-1}$ enters a ma on of the proton in ms ⁻² is	gnetic field (2î + 3k̂)T. If th	ne specific charge is 9.6 ×						
	a) $(6\hat{i} - 9\hat{j} + 4\hat{k}) \times 9.6 \times 1$		b) $(6\hat{i} + 9\hat{j} + 4\hat{k}) \times 9.6 \times 1$	$0^{12}$						
	c) $(6\hat{i} - 9\hat{j} - 4\hat{k}) \times 9.6 \times 1$		d) $(6\hat{i} + 9\hat{j} - 4\hat{k}) \times 9.6 \times 10^{12}$							
681.	- [유럽 사 프라이트		ing an angle of 45° with horizontal. The equation for							
22.74				B are constants. The ratio						
	$A: B \text{ is } (g = 10 \text{ ms}^{-2})$									
	a) 1:5	b) 5:1	c) 1:40	d) 40:1						
682.			the figure. Then the ratio o	7						
	A 60° 30° B  T ₁ T ₂ S0 kg									
	a) 1:1	b) 1:√3	c) √3:1	d) 1:3						
683.	A particle is projected up	from a point at an angle wi	th the horizontal. At any tir	me t if p = linear						
	momentum, $y = $ vertical d	isplacement, $x = horizonta$	l displacement, then the ki	netic energy $(K)$ of the						
	particle plotted against th	ese parameters can be								
	a) x	b) **	c) ***	d) ***						
684	A wheel of radius 1m rolls	s forward half a revolution	on a horizontal ground. Th	e magnitude to the						
004.	displacement of the point	of the wheel initially in co	ntact with the ground is	90. 1 (1994) <del>18.</del> 44-5 (1994) 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19						
	a) 2π	b) $\sqrt{2\pi}$	c) $\sqrt{\pi^2 + 4}$	d) π						
685.			2-50	is tied to it and revolved in num angular velocity of the						
	a) 4 radians/sec	b) 16 radians/sec	c) $\sqrt{21}$ radians/sec	d) 2 radians/sec						
686.	Two forces, each equal to	$\frac{P}{2}$ , act at right angles. Their	effect may be neutralized	by a third force acting						
	along their bisector in the	opposite direction with a	magnitude of							
	a) <i>P</i>	b) $\frac{P}{2}$	$rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{rac}{P}{r$	d) $\sqrt{2} P$						
		2	STATE NO. 100 TO TO THE TOTAL	15 10 1 51 57 57 857 PA 85						
687.	whose radius of curvature	e is 20 m. The speed of the	ence 'weightlessness' as the car at the top the hill is bet c) 16 ms ⁻¹ and 17 ms ⁻¹							
688.	What is the numerical val	ue of the vector $3\hat{i} + 4\hat{j} + 5$	k̂?							
	a) $3\sqrt{2}$	b) $5\sqrt{2}$	c) $7\sqrt{2}$	d) $9\sqrt{2}$						

b)  $4 \times 10^8$  cycles per sec d)  $12 \times 10^8$  cycles per sec

d)  $\frac{\sqrt{3}}{2}$ 

d)  $\left(\frac{3V_0^2}{2\alpha}\right)^{\frac{1}{3}}$ 

678. Two bodies are thrown up at angles of 45° and 60°, respectively with the horizontal. If both bodies attain

679. A particle is projected with velocity  $V_0$  along x-axis. The deceleration on the particle is proportional to the

c)  $\sqrt{\frac{2V_0^2}{3\alpha}}$ 

square of the distance from the origin i.e.  $a = \alpha x^2$ , the distance at which the particle stops is

same vertical height, then the ratio of velocities with which these are thrown is

b)  $\frac{2}{\sqrt{3}}$ 

b)  $\left(\frac{3V_0}{2\alpha}\right)^{\frac{1}{3}}$ 

a)  $0.08 \times 10^8$  cycles per sec

c)  $8 \times 10^8$  cycles per sec

689	. A stone is tied to one end	of a string and rotated in a	horizontal circle with a un	iform angular velocity. Let
	T be the tension in the str	ing. If the length of the stri	ng is halved and its angula	r velocity is doubled,
	tension in the string will	be		
	a) T/4	b) T/2	c) 2T	d) 4T
690	. A tube of length $L$ is filled	completely with an incom	pressible liquid of mass M	and closed at both the ends
	The tube is then rotated i	n a horizontal plane about	one of its ends with a unifo	orm angular velocity $\omega$ . The
	force exerted by the liqui			170 0
	a) $\frac{ML\omega^2}{2}$	L) MI 2	c) $\frac{ML\omega^2}{4}$	d) $\frac{ML^2\omega^2}{2}$
	$\frac{1}{2}$	b) $ML\omega^2$	c) <u>4</u>	$\frac{a}{2}$
691	A particle of mass = 5 is r	noving with a uniform spec	$ed v = 3\sqrt{2} in the XOY plan$	ne along the line $Y = X + 4$ .
		ular momentum of the par		
	a) 60 units	b) $40\sqrt{2}$ units	c) 7.5 units	d) zero
692	. A particle crossing the or	igin of co-ordinates at time	t = 0, moves in the $xy$ -pla	ne with a constant
			otion is $y = bx^2$ (b is a con	
	component in the x-direc			757
	_		<u> </u>	1
	a) $\sqrt{\frac{2b}{a}}$	b) $\sqrt{\frac{a}{2h}}$	c) $\sqrt{\frac{a}{b}}$	d) $\sqrt{\frac{b}{a}}$
	<b>N</b>	125	25 101	N
693	· The area o the parallelog	ram represented by the vec	ctors. $\vec{A} = 4\hat{\imath} + 3\hat{\jmath}$ and $\vec{B} = 2\hat{\imath}$	2î + 4ĵ is
	a) 14 units	b) 7.5 units	c) 10 units	d) 5 units
694	. Two bodies are projected	with the same velocity. If o	one is projected at an angle	of 30° and the other at an
	angle of 60° to the horizo	ntal, the ratio of the maxim	um heights reached is	
	a) 3:1	b) 1:3	c) 1:2	d) 2:1
695	. Tom and Dick are runnin	g forward with the same sp	eed. They are throwing a r	ubber ball to each other at
	constant speed $\boldsymbol{v}$ as seen	by the thrower. According	to Sam who is standing on	the ground the speed of the
	ball is			
	a) Same as v	b) Greater than v	c) Less than v	d) None of these
696	. A ball of mass $m$ is throw	n vertically upwards. Anot	her ball of mass $2m$ is thro	wn at an angle $ heta$ with the
	vertical. Both of them stay	y in air for same period of t	ime. The heights attained b	by the two balls are in the
	ratio of			
	a) 2:1	b) $1: \cos \theta$	c) 1:1	d) $\cos \theta$ : 1
697			and range 200 m. What is	the maximum height
	reached by it? (Take $g =$	$10 \text{ ms}^{-2}$ )		
	a) 31.25 m	b) 24.5 m	c) 18.25 m	d) 46.75 m
698	. A bullet fired at an angle	of 30° with the horizontal h	nits the ground 3 km away.	By adjusting its angle of
		to hit a target 5 km away. A	assume the muzzle speed to	be same and the air
	resistance is negligible			
	a) possible to hit a target	<u> 70</u>	b) not possible to hit a tar	rget 5 km away
	c) prediction is not possi		d) None of the above	
699	. The angular speed of seco	onds needle in a mechanica	l watch is	
	a) $\frac{\pi}{30}$ rad/s	b) $2\pi rad/s$	c) $\pi rad/s$	d) $\frac{60}{\pi}$ rad/s
700	. Two racing cars of masse	s $m_1$ and $m_2$ are moving in $\alpha$	circles of radii $r_1$ and $r_2$ resp	pectively. Their speeds are
				of the angular speed of the
	first to the second car is	aka 40 <b>-</b> 00 an atay -1 an tanàna 10 tao amin'ny taona 2001-14. Ilay kaominina dia mandritra ny faritra dia 40 me		and a to a proper for four to . 🗯 a to be a four to . 🖷 to see the energy of the month when to do
	a) $m_1: m_2$	b) $r_1$ : $r_2$	c) 1:1	d) $m_1: r_1: m_2r_2$
701			t = 36 t metre and 2y = 96	
	angle of projection is		,	
	a) $\sin^{-1}\left(\frac{4}{5}\right)$	b) $\sin^{-1} \left( \frac{3}{5} \right)$	c) $\sin^{-1}\left(\frac{4}{3}\right)$	d) $\sin^{-1}\left(\frac{3}{4}\right)$
	(3/	(5/	(3)	(4/

CLICK HERE >>>

702 A hall is projected upw	wards from the top of a tour	on with a valority of E0 ma-	1 making an angle of 60° with
	that of the tower is 70 m, the	N-St	¹ making an angle of 60° with
a) 2 s	b) 3 s	c) 5 s	d) 7 s
	ed from the ground with an		100.40 1000 200
			contally with velocity 5 ms ⁻¹
	les collide in ground at poin		
a) 10 m	b) 15 m	c) 20 m	d) 30 m
	its centre of gravity at a he		100 T T T T T T T T T T T T T T T T T T
and the second s	at which it could travel roun		To the control of the first flat out of the control
a) 12 ms ⁻¹	b) 18 ms ⁻¹	c) 22 ms ⁻¹	d) 27 ms ⁻¹
) 7	ntal range of a projectile is 4		
will be			
a) 100 m	b) 200 m	c) 400 m	d) 800 m
			. Its centripetal acceleration
is			•
a) $1.5 \times 10^{-3} \ m/s^2$	b) $3 \times 10^{-3} \ m/s^2$	c) $6 \times 10^{-3}  m/s^2$	d) $12 \times 10^{-3} \ m/s^2$
	a horizontal circle with cor		
a) Velocity	b) Acceleration	c) Kinetic energy	d) Displacement
708. Projection of $\vec{P}$ on $\vec{Q}$ is			
a) P · Q		c) $\vec{P} \times \hat{Q}$	d) $\vec{P} \times \vec{O}$
	an angle of 45° with the hor		
557 6	point of projection, is:		. ,
	•		1
a) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$	b) 45°	c) 60°	d) $\tan^{-1}\frac{1}{2}$
710. A particle covers 50 m	distance when projected w	vith an initial speed. On the	same surface it will cover a
	ted with double the initial s	ranga kanggana ing termenga menangan period dan banggan period dan banggan period dan banggan period dan bangg Tanggan period period period dan period dan banggan period dan banggan period dan banggan period dan banggan p	
a) 100 m	b) 150 m	c) 200 m	d) 250 m
1.51	here is suspended by a strip	ng of length <i>l</i> . The sphere is	rotated uniformly in a
horizontal circle with	the string making an angle (	9 with the vertical. The time	e period of this conical
pendulum is			
/tanθ	b) $2\pi\sqrt{l\sin\theta/g}$	G .	Icos θ
a) $2\pi \sqrt{\frac{l \tan \theta}{g}}$	b) $2\pi\sqrt{l}\sin\theta/g$	c) $2\pi \left  \frac{1}{\sigma} \right $	d) $2\pi \sqrt{\frac{l\cos\theta}{g}}$
ν -			y start
and the contract of the contra	es are joined together by a		and the first of the state of t
		outermost particle is $v_0$ , th	en the ratio of tensions in the
three sections of the s			
O A B ► 1 * 1 * 1-	C		
2) 2 . 5 . 7	→ b) 2 . 4 . E	c) 7:11:6	d) 3:5:6
a) 3 · 3 · /	b) $3:4:5$ of the following is not correct	c) / : 11 : 6	u) 5 : 5 : 6
			N - 611 - 3
a) $\widehat{A} = \widehat{B}$	b) $\widehat{A} \cdot \widehat{B} = AB$	c) $ \vec{A}  =  \vec{B} $	d) AB     BA
			es the ground at a distance of
	the tower. The initial velocit	and a contract of the contract	
a) $2.5  ms^{-1}$	b) 5 ms ⁻¹	c) 10 ms ⁻¹	d) $20 \ ms^{-1}$
	s projected with a velocity v		
(177	momentum of the projectile	about the point of projecti	on when the particle is at its
maximum height $h$ is		3	- 2
a) $\frac{\sqrt{3}}{2} \frac{mv^2}{a}$	b) Zero	c) $\frac{mv^3}{\sqrt{2a}}$	d) $\frac{\sqrt{3}}{16} \frac{mv^3}{a}$
2 g	40,45 <b>7</b> (40,644,455) (40,644)	$\sqrt{2g}$	16 g

- 716. For a projectile thrown into space with a speed v, the horizontal range is  $\frac{\sqrt{3}v^2}{2g}$ . The vertical range is  $\frac{v^2}{8g}$ . The angle which the projectile makes with the horizontal initially is
  - a) 15°

b) 30°

c) 45°

- d) 60°
- 717. A car is travelling at a velocity of  $10 \text{ kmh}^{-1}$  on a straight road. The driver of the car throws a parcel with a velocity of  $10\sqrt{2} \text{ kmh}^{-1}$  when the car is passing by a man standing on the side of the road. If the parcel is to reach the man, the direction of throw makes the following angle with direction of the car
  - a) 135°
- b) 45°

- c)  $\tan^{-1}(\sqrt{2})60^{\circ}$
- d)  $\tan\left(\frac{1}{\sqrt{2}}\right)$
- 718. Velocity vector and acceleration vector in a uniform circular motion are related as
  - a) Both in the same direction

b) Perpendicular to each other

c) Both in opposite direction

- d) No related to each other
- 719. A small mass m is attached to a massless string whose other end is fixed at P as shown in the figure. The mass is undergoing circular motion in the x-y plane with centre at O and constant angular speed  $\omega$ . If the angular momentum of the system, calculated about O and P are denoted by  $\vec{L}_O$  and  $\vec{L}_P$  respectively, then



- a)  $\vec{L}_O$  and  $\vec{L}_P$  do not vary with time
- b)  $\vec{L}_{O}$  varies with time while  $\vec{L}_{P}$  remains constant
- c)  $\vec{L}_O$  remains constant while  $\vec{L}_P$  varies with time
- d)  $\vec{L}_O$  and  $\vec{L}_P$  both vary with time
- 720. A mass *m* is attached to the end of a rod of length *l*. The mass goes along a vertical circular path with the other end hinged at its centre. What should be the minimum velocity of the mass at the bottom of the circle so that the mass completes the circle?
  - a)  $\sqrt{5gl}$
- b)  $\sqrt{2gl}$
- c)  $\sqrt{3gl}$
- d)  $\sqrt{4gl}$
- 721. The adjacent sides of a parallelogram are represented by co-initial vectors  $2\hat{\imath} + 3\hat{\jmath}$  and  $\hat{\imath} + 4\hat{\jmath}$ . The area of the parallelogram is
  - a) 5 units along z-axis

b) 5 units in x - y plane

c) 3 units in x - z plane

- d) 3 units in y z plane
- 722. A 0.098 kg block slides down a frictionless track as shown. The vertical component of the velocity of block at *A* is



a) √g

- b)  $2\sqrt{g}$
- c) 3√g

- d) 4./g
- 723. The height y and the distance x along the horizontal plane of a projectile on a certain planet (with no surrounding atmosphere) are given by  $y = 8t 5t^2$  metre and x = 6t metre, where t is in second. The velocity with which the projectile is projected, is
  - a)  $14 \text{ ms}^{-1}$
- b)  $10 \text{ ms}^{-1}$
- c)  $8 \text{ ms}^{-1}$
- d)  $6 \text{ ms}^{-1}$
- 724. A particle moves in circle of radius 25 cm at the rate of two revolutions per second. The acceleration of particle is
  - a)  $2\pi^2 \text{ms}^{-2}$
- b)  $4\pi^2 \text{ms}^{-2}$
- c)  $8\pi^2 \text{ms}^{-2}$
- d)  $\pi^2 \text{ms}^{-2}$



- 725. A bucket tied at the end of 11.6 m long string is whirled in a vertical circle with a constant speed. The minimum speed at which water from the bucket does not spill when it is a the highest position is
  - a)  $4 \text{ ms}^{-1}$
- b) 6.25 ms⁻¹

- 726. The centripetal acceleration of a particle of mass m moving with a velocity v in a circular orbit of radius r
  - a)  $v^2/r$  along the radius, towards the center
  - b)  $v^2/r$  along the radius, away from the center
  - c)  $mv^2/r$  along the redius, away from the center
  - d)  $mv^2/r$  along the radius, towards the center
- 727. A particle moves in a circle with a uniform speed. When it goes from a point A to a diametrically opposite point B, the momentum of the particle changes by  $\vec{\mathbf{p}}_A - \vec{\mathbf{p}}_B = 2 \text{ kg ms}^{-1}(\hat{\mathbf{j}})$  and the centripetal fore acting on it changes by  $\vec{\mathbf{F}}_A - \vec{\mathbf{F}}_B = 8 \, \text{N}(\hat{\mathbf{i}})$  where  $\hat{\mathbf{i}}$  and  $\hat{\mathbf{j}}$  are unit vectors along X and Y axes respectively. The angular velocity of the particle is
  - a) Dependent of its mass b) 4 rad s⁻¹
- c)  $\frac{2}{\pi}$  rad s⁻¹
- d)  $16 \,\mu \, \text{rad s}^{-1}$
- 728. A bomber plane moves horizontally with a speed of  $500 \mathrm{ms}^{-1}$  and a bomb released from it, strikes the ground in 10 s. Angel at which it strikes the ground will be  $(g = 10 \text{ms}^{-2})$
- b) tan  $\left(\frac{1}{5}\right)$

- 729. Average torque on a projectile of mass m, initial speed u and angles of projection  $\theta$ , between initial and final position P and Q as shown in figure about the point of projection is



- a)  $mu^2 \sin \theta$
- b)  $mu^2 \cos \theta$
- c)  $\frac{1}{2} mu^2 \sin 2\theta$
- d)  $\frac{1}{2} mu^2 \cos 2\theta$
- 730. A body 'A' moves with constant velocity on a straight line path tangential to the earth's surface. Another body 'B' is thrown vertically upwards, it goes to a height and falls back on earth. A third body 'C' is projected to an angle and follows a parabolic path as shown in figure



The bodies whose angular momentum relative to the center of the earth is conserved are

- a) Bonly
- b) B and C
- c) A, B, C
- d) None of the above
- 731. A particle is moving with velocity  $\mathbf{v} = k(y\hat{\mathbf{i}} + x\hat{\mathbf{j}})$ , where k is a constant. The general equation for its path
  - a)  $y = x^2 + constant$

b)  $y^2 = x + constant$ 

c) xy = constant

- d)  $y^2 = x^2$  constant
- 732. The maximum and minimum tension in the string whirling in a circle of radius 2.5 m with constant velocity are in the ratio 5:3 then its velocity is
  - a)  $\sqrt{98} \text{ ms}^{-1}$
- b)  $7 \text{ ms}^{-1}$
- c)  $\sqrt{490} \text{ ms}^{-1}$
- 733. A particle originally at a rest at the highest point of a smooth circle in a vertical plane, is gently pushed and starts sliding along the circle. It will leave the circle at a vertical distance h below the highest point such that







a) 
$$h = 2R$$

b) 
$$h = \frac{R}{2}$$

c) 
$$h = R$$

d) 
$$h = \frac{R}{3}$$

734. A particle moves in a circle of radius 25 cm at two revolutions per second. The acceleration of the particle in  $m/s^2$  is

a) 
$$\pi^2$$

b)  $8\pi^2$ 

c)  $4\pi^2$ 

d)  $2\pi^2$ 

735. A cyclist goes round a circular path of circumference 34.3 m in  $\sqrt{22}$  s, the angle made by him with the vertical will be

b) 40°

d) 48°

736. A bomb is dropped from an aeroplane flying horizontally with a velocity  $469 \text{ ms}^{-1}$  at an altitude of 980 m. The bomb will hit the ground after a time

b)  $\sqrt{2}$  s

c) 
$$5\sqrt{2}$$
 s

d)  $10\sqrt{2}$  s

737. The horizontal range of a projectile is  $4\sqrt{3}$  times its maximum height. Its angle of projection will be

b) 60°

d) 30°

738. Which one is Angular resolution fundamental quantity

a) Length

b) Time

c) Radian

d) Angle

739. A ball thrown by one player reaches the other in 2 s. The maximum height attained by the ball above the point of projection will be  $(g = 10 \text{ ms}^{-2})$ 

a) 2.5 m

b) 5 m

c) 7.5 m

d) 10 m

740. The acceleration of a train travelling with speed of 400 m/s as it goes round a curve of radius 160 m, is

a)  $1 \, km/s^2$ 

b)  $100 \, m/s^2$ 

c)  $10 \, m/s^2$ 

d)  $1 m/s^2$ 

741. A ball of mass 0.25 kg attached to the end of a string of length 1.96 m is moving in a horizontal circle. The string will break if the tension is more than 25N. What is the maximum speed with which the ball can be moved?

a)  $14 \text{ ms}^{-1}$ 

b)  $3 \text{ ms}^{-1}$ 

c)  $3.92 \text{ ms}^{-1}$ 

d)  $5 \text{ ms}^{-1}$ 

742. An electric fan has blades of length 30 cm as measured from the axis of rotation. If the fan is rotating at 1200 rpm, the acceleration of a point on the tip of the blade is about

a)  $1600 \text{ ms}^{-2}$ 

b)  $4740 \text{ ms}^{-2}$ 

c) 2370 ms⁻²

d)  $5055 \text{ ms}^{-2}$ 

743. Two particles 1 and 2 are projected with same speed v as shown in figure. Particle 2 is on the ground and particle 1 is at a height h from the ground and at a horizontal distance s from particle 2. If a graph is plotted between v and s for the condition of collision of the two then (v on y-axis and s on x-axis)



a) It will be a parabola passing through the origin

b) It will be straight line passing through the origin and having a slope of  $\sqrt{\frac{g}{8h}}$ 

c) It will be a straight line passing through the origin and having a slope of  $\sqrt{\frac{g}{4h}}$ 

d) It will be a straight line not passing through the origin

744. If a body is projected with an angle  $\theta$  to the horizontal then

a) its velocity is always perpendicular to its acceleration

b) its velocity becomes zero as its maximum height

c) its velocity makes zero angle with the horizontal at its maximum height

d) the body just before hitting the ground, the direction of velocity coincides with the acceleration





	s ⁻¹ to hit a target 200m away on a level ground. If $g = 10 \text{ ms}^{-2}$ ,
the gun should be aimed	
a) directly at the target	b) 5 cm below the target
c) 5 cm above the target	d) 2 cm above the target
	rs of magnitude 1, 2 and 3 whose directions are those of the sides
of an equilateral triangle taken in order is	
a) zero b) $2\sqrt{2}$ unit	c) $4\sqrt{3}$ unit d) $\sqrt{3}$ unit
	e of radius 1.5 m and at height 2.0 m above level ground. The
9	ntially and strikes the ground after traveling a horizontal
The state of the s	f the centripetal acceleration of the stone while in circular
motion?	a tananana aras ana ana ana
	c) $15.63 \text{ ms}^{-2}$ d) $125 \text{ ms}^{-2}$
	th muzzle speed $V$ is $R$ , then the angle of elevation of the gun is
a) $\cos^{-1}\left(\frac{V^2}{Rg}\right)$ b) $\cos^{-1}\left(\frac{gR}{V^2}\right)$	c) $\frac{1}{2} \left( \frac{V^2}{Ra} \right)$ d) $\frac{1}{2} \sin^{-1} \left( \frac{gR}{V^2} \right)$
( )	1 9 7
	can be created momentarily when a plane flies over the top of a
	ne radius of the vertical circle that the pilot must use is
a) 10.6 km b) 8.5 kg	c) 6.4 km d) 4.0 km
	velocity 50 ms ⁻¹ and angle of 30°. It crosses a wall after 3 s.
How far beyond the wall the stone will str	
a) 80.5 m b) 85.6 m	c) 86.6 m d) 75.2 m
	- 2sintĵ. What is the angle between the force $\vec{F}$ acting on the
particle and the momentum $\vec{P}$	
a) 65° b) 90°	c) 150° d) 180°
8 18 20 Her New 1981 (1982 6 5) 12 Her 1981 - 19 및 Her 1981 Her 1981 - 1981 Her 198	of 45° with the horizontal. If air resistance is negligible, then
total change in momentum when it strikes	
a) $2mv$ b) $\sqrt{2} mv$	c) $mv$ d) $mv/\sqrt{2}$
[1] [1]	e moving in $x - y$ plane varies with time as $r = 2t$ and the angle
	-axis is $\theta = 4t$ . Here, $t$ is in second, $r$ in metre and $\theta$ in radian.
The speed of the particle at $t = 1$ s is a) $10 \text{ ms}^{-1}$ b) $16 \text{ ms}^{-1}$	c) 10 ms ⁻¹ d) 12 ms ⁻¹
그리아 아이트를 가지 않는데 하는데 하는데 그렇게 되었다. 그 아이들은 그리아	of tower with a velocity $50 \text{ ms}^{-1}$ making an angle $30^{\circ}$ with the
reach the ground	ter how many seconds from the instant of throwing will the ball
a) 2 s b) 5 s	c) 7 s d) 9 s
	s surface with velocity of 50ms ⁻¹ . 2 s later, it just clears a wall 5
m high. What is the angle of projection?	satiface with velocity of Johns 1.23 later, it just clears a wan 3
a) 45° b) 30°	c) 60° d) None of these
	ghest point is half of the initial kinetic energy. What is the angle
of projection with the horizontal?	shest point is han of the initial kinetic energy. What is the angle
a) 30° b) 45°	c) 60° d) 90°
	x and $y$ of a projectile at a given time $t$ are given by $x = 6t$ metre
and $y = 8t - 5t^2$ metre. The range of the	
a) 9.6 b) 10.6	c) 19.2 d) 38.4
	ngle of elevation 30°. Mark the correct statement
a) Kinetic energy will be zero at the higher	
b) Vertical component of momentum will	be conserved
c) Horizontal component of momentum w	rill be conserved
d) Gravitational potential energy will be m	ninimum at the highest point of the trajectory

- 759. An aeroplane moving horizontally at a speed of 200 m/s and at a height of  $8.0 \times 10^3$  m is to drop a bomb on a target. At what horizontal distance from the target should the bomb be released
  - a) 7.234 km
- b) 8.081 km
- c) 8.714 km
- 760. A body is projected vertically upwards at time t=0 and it is seen at a height H at instants  $t_1$  and  $t_2$ seconds during its flight. The maximum height attained is (g is acceleration due to gravity)
  - a)  $\frac{g(t_2 t_1)^2}{8}$
- b)  $\frac{g(t_1+t_2)^2}{4}$  c)  $\frac{g(t_1+t_2)^2}{8}$
- d)  $\frac{g(t_2-t_1)^2}{4}$
- 761. It was calculated that a shell when fired from a gun with a certain velocity and at an angle of elevation  $\frac{5\pi}{36}$ rad should strike a given target. In actual practice, it was found that a hill just prevented the trajectory. At what angle of elevation should the gun be to hit the target?
- b)  $\frac{11\pi}{36}$  rad

- 762. Work done when a force,  $\vec{F} = (\hat{i} + 2\hat{j} + 3\hat{k})N$  acting on a particle takes it from the point  $\vec{r}_1 = (\hat{i} + \hat{j} + \hat{k})m$ to the point  $\vec{r}_2 = (\hat{i} + \hat{j} + 2\hat{k})$ 
  - a) -31
- b) -1 J
- c) zero
- d) 2 I
- 763. A body of mass 2 kg attached to a string is whirled in a vertical circle of radius 5 m. The minimum speed of the body at lowest point so that the cord does not slacken even at the highest point is
  - a)  $15.65 \text{ ms}^{-1}$
- b)  $6.75 \text{ ms}^{-1}$
- c)  $20.87 \text{ ms}^{-1}$
- d)  $45.83 \text{ ms}^{-1}$

764. Consider the given velocity-time graph



It represents the motion of

- a) A projectile projected vertically upward, from a point
- b) An electron in the hydrogen atom
- c) A car with constant acceleration along a straight road
- d) A bullet fired horizontally from the top of a tower
- 765. A cyclist is travelling with velocity v on a banked curved road of radius R. The angle  $\theta$  through which the cyclist leans inwards is given by
  - a)  $\tan \theta = \frac{Rg}{m^2}$
- b)  $\tan \theta = v^2 Rg$  c)  $\tan \theta = \frac{v^2 g}{Rg}$  d)  $\tan \theta = \frac{v^2}{Rg}$



# **MOTION IN A PLANE**

: ANSWER KEY:														
4)	-	2)		2)			Jam	-0	450)		450)	8	400)	
1)	d	2)	d	3)	d L	4)	a 17	[화화 - 100] -	178)	b	179)	a	180)	c
5) 9)	a	6) 10)	a	7) 11)	b	8) 12)	c 18		182)	d	183)	a	184) 188)	c
າງ 13)	a b	14)	c b	15)	c d	16)	b 18		186) 190)	a d	187) 191)	a c	192)	c b
17)	c	18)	d	19)	a	20)	d 19	•	194)	b	195)	b	196)	d
21)	c	22)	c	23)	a	24)	a 19		198)	a	199)	c	200)	b
25)	c	26)	b	27)	d	28)	c 20		202)	d	203)	d	204)	a
29)	С	30)	b	31)	c	32)	d 20		206)	b	207)	b	208)	d
33)	c	34)	b	35)	a	36)	c 20	27	210)	a	211)	c	212)	c
37)	b	38)	b	39)	a	40)	b 21		214)	b	215)	a	216)	b
41)	b	42)	d	43)	c	44)	b 21		218)	а	219)	c	220)	b
45)	d	46)	a	47)	b	48)	c 22	() b	222)	d	223)	c	224)	d
49)	a	50)	С	51)	b	52)	d 22	5) d	226)	d	227)	b	228)	b
53)	d	54)	b	55)	b	56)	b 22	e) c	230)	b	231)	a	232)	b
57)	d	58)	a	59)	C	60)	c 23	3) a	234)	c	235)	a	236)	c
61)	d	62)	d	63)	b	64)	c 23	7) a	238)	d	239)	d	240)	d
65)	c	66)	d	67)	a	68)	c 24	l) c	242)	b	243)	a	244)	a
69)	a	70)	b	71)	a	72)	a 24	5) a	246)	b	247)	a	248)	a
73)	d	74)	b	75)	a	76)	a 24	9) a	250)	C	251)	C	252)	b
77)	a	78)	d	79)	c	80)	d 25	3) b	254)	c	255)	a	256)	b
81)	d	82)	d	83)	d	84)	d 25	7) c	258)	b	259)	b	260)	C
85)	b	86)	d	87)	a	88)	c 26		262)	b	263)	b	264)	a
89)	a	90)	c	91)	b	92)	a 26		266)	c	267)	c	268)	b
93)	d	94)	С	95)	d	96)	a 26		270)	b	271)	b	272)	b
97)	d	98)	d	99)	d	100)	a 27:		274)	b	275)	b	276)	C
101)	c	102)	b	103)	a	104)	a 27	5	278)	a	279)	d	280)	c
105)	d	106)	b	107)	a	108)	a 28	550	282)	b	283)	b	284)	b
109)	c	110)	b	111)	a	112)	a 28		286)	a	287)	b	288)	C
113)	С	114)	a	115)	b	116)	b 28	1000 H	290)	d	291)	a	292)	a
117)	С	118)	c	119)	b	120)	c 29		294)	b	295)	d	296)	b
121)	C	122)	d	123)	c	124)	c 29'		298)	d	299)	C	300)	b
125)	c	126)	a	127)	C	128)	d 30		302)	c	303)	d L	304)	d
129) 133)	a	130) 134)	b b	131) 135)	d d	132) 136)	c 30	2711	306) 310)	a	307) 311)	b d	308)	a
137)	a c	138)	a	139)	a	140)	c 31		314)	a a	311)	c	312) 316)	c b
141)	b	142)	d	143)	d	144)	b 31		314)	b	319)	b	320)	c
145)	c	146)	d	147)	c	148)	c 32	27	322)	b	323)	d	324)	c
149)	c	150)	a	151)	a	152)	c 32		326)	a	327)	a	328)	c
153)	a	154)	a	155)	d	156)	c 32		330)	c	331)	a	332)	d
157)	b	158)	b	159)	b	160)	c 33	3330	334)	С	335)	С	336)	С
161)	a	162)	a	163)	a	164)	a 33'		338)	c	339)	a	340)	c
165)	b	166)	c	167)	c	168)	d 34	3.5	342)	a	343)	b	344)	b
169)	c	170)	c	171)	d	172)	d 34		346)	a	347)	c	348)	b
173)	c	174)	d	175)	a	176)	b 34	200	350)	b	351)	d	352)	d

353)	a	354)	a	355)	c	356) 1	b   55	3) b	)	554)	d	555)	C	556)	d
357)	a	358)	d	359)	a	360) a	a   55	7) a	1	558)	a	559)	a	560)	C
361)	c	362)	b	363)	a	364) 1	56	1) d	1	562)	С	563)	d	564)	a
365)	b	366)	a	367)	c	12000000 m	d 56	5) b	,	566)	d	567)	c	568)	d
369)	b	370)	a	371)	a		56	100		570)	b	571)	c	572)	b
373)	a	374)	b	375)	c	~	a 57			574)	c	575)	c	576)	c
377)	c	378)	b	379)	c		57	.1512		578)	a	579)	c	580)	d
381)	a	382)	b	383)	d		d 58			582)	d	583)	d	584)	a
385)	d	386)	d	387)	b		58			586)	a	587)	С	588)	a
389)	c	390)	d	391)	b	0000	a 58			590)	a	591)	a	592)	a
393)	a	394)	С	395)	c		59			594)	С	595)	b	596)	b
397)	d	398)	С	399)	c		d 59			598)	d	599)	a	600)	c
401)	d	402)	d	403)	b	nonane I ne	60			602)	b	603)	d	604)	c
405)	b	406)	d	407)	a		60			606)	d	607)	C	608)	b
409)	d	410)	b	411)	b	10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (	60			610)	d	611)	d	612)	С
413)	С	414)	b	415)	d		61	25		614)	a	615)	a	616)	a
417)	a	418)	d	419)	d		61	100		618)	С	619)	С	620)	b
421)	c	422)	С	423)	d		d 62			622)	a	623)	b	624)	a
425)	a	426)	b	427)	a	400	62			626)	С	627)	a	628)	c
429)	a	430)	С	431)	a		62	100		630)	С	631)	d	632)	a
433)	a	434)	a	435)	b	40.63	63			634)	a	635)	d	636)	c
437)	b	438)	a	439)	a		63			638)	a	639)	С	640)	d
441)	a	442)	b	443)	b		a 64		_	642)	d	643)	c	644)	b
445)	c	446)	С	447)	d		64	.376)		646)	b	647)	b	648)	d
449)	d	450)	b	451)	d		a 64			650)	a	651)	b	652)	b
453)	С	454)	С	455)	b	>	65			654)	С	655)	b	656)	d
457)	d	458)	c	459)	c		65			658)	a	659)	a	660)	b
461)	a	462)	d	463)	d		66			662)	d	663)	d	664)	b
465)	a	466)	d	467)	a		d 66	350		666)	d	667)	d	668)	c
469)	С	470)	b	471)	c		66			670)	b	671)	b	672)	d
473)	d	474)	d	475)	a		a 67			674)	С	675)	b		b
477)	d	478)	b	479)	b		d 67			678)	c	679)	d	680)	c
481)	b	482)	d	483)	c		a 68			682)	c	683)	b	684)	c
485)	c	486)	С	487)	a		68	-		686)	c	687)	a	688)	b
489)	d	490)	b	491)	d		d 68	1500		690)	a	691)	a	692)	b
493)	b	494)	b	495)	d	200 m to 1	d 69			694)	b	695)	b	696)	c
497)	a	498)	a	499)	a		69	7) a	1	698)	b	699)	a	700)	c
501)	d	502)	b	503)	a		a 70	1) a	1	702)	d	703)	b	704)	d
505)	C	506)	d	507)	d		c   70	5) a	1	706)	c	707)	c	708)	b
509)	b	510)	b	511)	c	512) I	b 70	9) d	ı	710)	c	711)	d	712)	d
513)	c	514)	d	515)	a		a 71	3) b	)	714)	c	715)	d	716)	b
517)	b	518)	b	519)	d	520) a	a 71	7) b	)	718)	b	719)	C	720)	d
521)	a	522)	d	523)	a	524)	72	1) a	1	722)	a	723)	b	724)	b
525)	b	526)	a	527)	d	528) 1	b 72	5) a	ı	726)	a	727)	b	728)	a
529)	C	530)	b	531)	b	532) l	b 72	9) c	:	730)	d	731)	d	732)	a
533)	C	534)	d	535)	a	536)	d 73	3) d	i	734)	c	735)	a	736)	d
537)	a	538)	d	539)	c	540)	c <b>73</b>	7) d	ı	738)	d	739)	b	740)	a
541)	d	542)	d	543)	d	544) a	a 74	1) a	1	742)	b	743)	b	744)	c
545)	d	546)	a	547)	a		a 74	5) c	:	746)	d	747)	a	748)	d
549)	c	550)	c	551)	a	552)	c <b>74</b>	9) 0	:	750)	c	751)	b	752)	b
							0.5								

753) b 754) c 755) c 756) b 765) d 757) a 758) c 759) b 760) c 761) d 762) b 763) a 764) a



# MOTION IN A PLANE

# : HINTS AND SOLUTIONS :

Given, x = 0.20 m, y = 0.20 m, u = 1.8ms⁻¹ Let the ball strike the nth step of stairs, Vertical distance travelled

$$= ny = n \times 0.20 = \frac{1}{2}gt^2$$

Horizontal distance travelled, nx = ut

or 
$$t = \frac{nx}{u}$$
  

$$\therefore ny = \frac{1}{2}g \times \frac{n^2x^2}{u^2}$$
or  $n = \frac{2u^2}{g} \frac{y}{x^2} = \frac{2 \times (1.8)^2 \times 0.20}{9.8 \times (0.20)^2}$ 

$$= 3.3 = 4$$

### 2 (d)

Work done in circular motion is always zero

### 4 (a

The cord is most likely to break at the orientation, when mass is at B as tension in the string at this point is maximum

$$\frac{T_{\text{max}}}{T_{\text{min}}} = \frac{\frac{mv^2}{L} + mg}{\frac{mv^2}{L} - mg} = 2 \quad ...(i)$$

Simplifying Eq. (i), we get,

$$v_H = \sqrt{3gL} = \sqrt{\frac{3 \times 10 \times 10}{3}} = 10 \text{ ms}^{-1}$$

### 6 **(**a

Here,  $\overrightarrow{v_1} = 30 \text{km h}^{-1} \text{ due north} = \overrightarrow{OA}$  $\overrightarrow{v_2} = 40 \text{kmh}^{-1} \text{ due east} = \overrightarrow{OB}$ 

Change in velocity in 20 s

$$\Delta \vec{\mathbf{v}} = \overrightarrow{\mathbf{v}_2} - \overrightarrow{\mathbf{v}_1} = \overrightarrow{\mathbf{v}_2} + (\overrightarrow{-\mathbf{v}_1})$$

$$= \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OD}$$

$$|\Delta \vec{\mathbf{v}}| = \sqrt{v_2^2 + v_1^2} = \sqrt{40^2 + 30^2}$$

 $= 50 \text{ kmh}^{-1}$ 

Acceleration,  $\vec{a} = \frac{|\Delta \vec{v}|}{\Delta t}$ 

$$=\frac{50}{20}=2.5\,\rm kmh^{-2}$$

$$\tan \beta = \frac{v_1}{v_2} = \frac{30}{40}$$

 $= 0.75 = \tan 37^{\circ}$ 

 $\beta = 37^{\circ}$  north of east



### 7 **(b)**

Maximum horizontal range = 80 m

$$\theta = 45^{\circ} \text{ m}$$

$$\therefore \frac{u^2}{q} = 80 \text{ m}$$

Maximum height,  $h = \frac{u^2 \sin^2 \theta}{2a}$ 

$$=\frac{80}{2}(\sin^2 45^\circ)=20 \text{ m}$$

### 8 (c

If v is velocity of the bob on reaching the lowest point, then  $\frac{1}{2}mv^2 = mgL$ 

To void breaking, strength of the string

$$T_L = \frac{mv^2}{L} + mg = \frac{2mg L}{L} + mg = 3 mg$$

## 10 (c)

When a force of constant magnitude acts on velocity of particle perpendicularly, then there is no change in the kinetic energy of particle. Hence, kinetic energy remains constant.

### 11 (c)

Due to constant velocity along horizontal and vertical downward force of gravity stone will hit the ground following parabolic path

12 (d)



$$\theta = \tan^{-1} \left( \frac{v^2}{rg} \right)$$

$$= \tan^{-1} \left[ \frac{\left( 14\sqrt{3} \right)^2}{20\sqrt{3} \times 9.8} \right] = \tan^{-1} \left[ \sqrt{3} \right]$$

$$= 60^{\circ}$$

13 (b)

The two angles of projection are clearly  $\theta$  and

$$T_1 = \frac{2\nu \sin \theta}{g} \quad \text{and} \quad T_2 = \frac{2\nu \sin(90^\circ - \theta)}{g}$$
$$T_1 T_2 = \frac{2(\nu)^2 (2\sin \theta \cos \theta)}{g \times g} = \frac{2R}{g}$$

Computing the given equation with

$$y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}$$
, we get  $\tan \theta = \sqrt{3}$ 

15 (d)

Angle made by the cyclist with vertical is given by  $\tan \theta = \frac{v^2}{rg}$ 

$$\therefore \theta = \tan^{-1} \left( \frac{10 \times 10}{80 \times 10} \right) \left( \therefore v = 36 \times \frac{5}{18} \right)$$
$$= 10 \text{ ms}^{-1}$$

$$= \tan^{-1}\left(\frac{1}{8}\right)$$

16 (b)

Let x be increase in length of the spring. The particle would move in a circular path of radius (l + x). Centripetal force = force due to the spring  $m(l+x)\omega^2 = kx$ 

$$\therefore x = \frac{m\omega^2 l}{k - m\omega^2}$$

$$h = \frac{u^2}{2g} \Longrightarrow u^2 = 2gh$$

Maximum horizontal distance

$$\frac{R_{\text{max}} = \frac{u^2}{g}}{u + \frac{h}{u}}$$

$$R_{\text{max}} = 2h$$

$$\omega = \sqrt{\frac{g}{r}} = \sqrt{\frac{9.8}{0.2}} = 7rad/s$$

 $\text{Minimum tension } T_1 = \frac{mv^2}{r} - mg$ 

Maximum tension  $T_2 = \frac{mv^2}{r} + mg$ 

Let 
$$\frac{mv^2}{r} = x$$

So, 
$$T_1 = x - mg$$
 ...(i)

$$T_2 = x + mg$$
 ...(ii)

Diving Eq. (i) by Eq. (ii)
$$\frac{T_1}{T_2} = \frac{x - mg}{x + mg} \quad \left(\because \text{ Given } \frac{T_1}{T_2} = \frac{3}{5}\right)$$

$$\therefore \frac{3}{T_2} = \frac{x - mg}{T_2}$$

$$5 \quad x + mg$$
or  $3x + 3mg = 5x - 5mg$ 

or 
$$x = 4 mg$$

$$ie, \frac{mv^2}{r} = 4mg$$

$$v^2 = 4 rg$$

or 
$$v = \sqrt{4rg}$$

or 
$$v = \sqrt{4 \times 2.5 \times 9.8}$$

$$v = \sqrt{98} \text{ ms}^{-1}$$

20 (d)

Let  $\alpha''$  be the angle of projection of the second



$$R = \frac{u^2}{g\cos\beta} [\sin(2\alpha - \beta)]$$

Range of both the bodies is same. Therefore,

$$\sin(2\alpha - \beta) = \sin(2\alpha'' - \beta)$$

or 
$$2\alpha'' - \beta = \pi - (2\alpha - \beta)$$

$$\alpha'' = \frac{\pi}{2} - (\alpha - \beta)$$

Now, 
$$T = \frac{2u\sin(\alpha - \beta)}{g\cos\beta}$$
 and  $T'' = \frac{2u\sin(\alpha'' - \beta)}{g\cos\beta}$ 

Now, 
$$T = \frac{2u\sin(\alpha-\beta)}{g\cos\beta}$$
 and  $T'' = \frac{2u\sin(\alpha''-\beta)}{g\cos\beta}$   

$$\therefore \frac{T}{T''} = \frac{\sin(\alpha-\beta)}{\sin(\alpha''-\beta)} = \frac{\sin(\alpha-\beta)}{\sin\left\{\frac{\pi}{2} - (\alpha-\beta) - \beta\right\}}$$

$$= \frac{\sin(\alpha - \beta)}{\sin(\frac{\pi}{2} - \alpha)} = \frac{\sin(\alpha - \beta)}{\cos \alpha}$$

21 (c)

$$R = 4H \cot \theta$$

When 
$$R = H$$
 then  $\cot \theta = 1/4 \Rightarrow \theta = \tan^{-1}(4)$ 

For looping the loop, the velocity at the lowest point of loop should be

$$v = \sqrt{5gr} = \sqrt{5gD/2} = \sqrt{2gh}$$
 or  $h = 5D/4$ 

$$\vec{P} = \frac{\vec{F} \cdot \vec{S}}{t}$$

$$= \frac{(2\hat{\imath} + 2\hat{\jmath}) \cdot (2\hat{\imath} + 2\hat{k})}{16} Js^{-1} = \frac{4}{16} Js^{-1} = 0.25 Js^{-1}$$

24 (a)

Work done by centripetal force in uniform circular motion is always equal to zero

$$h_1 = \frac{v^2 \sin^2 \alpha}{2g}, h_2 = \frac{v^2 \cos^2 \alpha}{2g}, \frac{h_1}{h_2} = \tan^2 \alpha$$

26 (b)

Since, acceleration is constant

$$\vec{s} = \vec{u} + \frac{1}{2}\vec{a}t^2$$

$$= (2\hat{\imath} - 4\hat{\jmath})t + \frac{1}{2}(3\hat{\imath} + 5\hat{\jmath})t^2$$

$$= (2\hat{\mathbf{i}} - 4\hat{\mathbf{j}})2 + \frac{1}{2}(3\hat{\mathbf{i}} + 5\hat{\mathbf{j}})2^2$$

$$=10\hat{i}+2\hat{j}$$

$$|\vec{\mathbf{s}}| = \sqrt{10^2 + 2^2} = \sqrt{104} = 10.2$$
m

Here 
$$W = T(\cos\theta + \sin\theta) < T$$

so 
$$P + Q = T(\cos\theta + \sin\theta) < T$$

Where as (a), (b) and (c) are correct and (d) is wrong.

28 (c)

Given that, radius of circle, r = 30 cm = 0.3 mlinear speed v = 2t

Now, radial acceleration  $a_{\rm R} = \frac{v^2}{r} = \frac{(2t)^2}{0.3}$ 

at 
$$t = 3s$$

$$a_{\rm R} = \frac{(2 \times 3)^2}{0.3}$$

$$\frac{36}{0.3} = 120 \text{ms}^{-2}$$

or 
$$a_{\rm R} = 120 {\rm m s}^{-2}$$

and tangential acceleration  $a_T = \frac{dv}{dt} = \frac{d}{dt}(2t)$ 

$$= 2 \text{ms}^{-1}$$

29 (c)

$$\mathbf{L} = m(\mathbf{r} \times \mathbf{v})$$

$$\mathbf{L} = m \left[ v_0 \cos\theta \ t \hat{\mathbf{i}} + \left( v_0 \sin\theta \ t - \frac{1}{2} g t^2 \right) \hat{\mathbf{j}} \right]$$

$$\times \left[ v_0 \cos\theta \,\hat{\mathbf{i}} + (v_0 \sin\theta - gt) \hat{\mathbf{j}} \right]$$

$$= mv_0 \cos\theta \ t \left[ -\frac{1}{2}gt \right] \hat{\mathbf{k}}$$

$$= -\frac{1}{2}mgv_0t^2\cos\theta\,\hat{\mathbf{k}}$$

$$v^2 = u^2 + 2as$$

At max. height v = 0 and for upward direction

$$\therefore u^2 = 2gs \Rightarrow s = \frac{u^2}{2a}; \ \because s_e = s_p$$

$$\left(\frac{u_e}{u_p}\right)^2 = \left(\frac{g_e}{g_p}\right) \Rightarrow \left(\frac{5}{3}\right)^2 = \frac{9.8}{g_p} \Rightarrow g_p = 3.5 \text{ m/s}^2$$

31 (c)

From 
$$\frac{mv^2}{r} = F = \mu mg$$

32 (d)

$$\omega_1 = 2\pi \times 300 \text{ rad/min}$$

$$\omega_2 = 2\pi \times 100 \,\text{rad/min}$$

Angular retardation

$$\alpha = \frac{\omega_1 - \omega_2}{2}$$

$$=\frac{2\pi\times300-2\pi\times100}{2}$$

$$= 2\pi \times 100 \text{ rad/min}^2$$

$$= 200\pi \, \text{rad/min}$$

33 (c)

If a particle is projected with velocity u at an angle  $\theta$  with the horizontal, the velocity of the particle at the highest point is

 $v = u \cos \theta = 200 \cos 60^{\circ} = 100 \text{ ms}^{-1}$ 

If m is the mass of the particle, then its initial momentum at highest point in the horizontal direction =  $mv = m \times 100$ . It means at the highest point, initially the particle has no momentum vertically upwards or downwards. Therefore, after explosion, the final momentum of the particles going upwards and downwards must be zero. Hence, the final momentum after explosion is the momentum of the third particle, in the horizontal direction. If the third particle moves with velocity v', then its momentum =  $\frac{mv'}{3}$ , According to law of conservation of linear

momentum,

We have  $\frac{mv}{3} = m \times 100 \text{ or } v' = 300 \text{ ms}^{-1}$ 

34

Reaction on inner wheel  $R_1 = \frac{1}{2}M\left[g - \frac{v^2h}{ra}\right]$ 

Reaction on outer wheel  $R_2 = M \left[ g + \frac{v^2 h}{ra} \right]$ 





where, r = radius of circular path, 2a = distancebetween two wheels and h = height of centre ofgravity of car

$$\vec{A} = 2\hat{i} + 4\hat{j}, \vec{B} = 5\hat{i} + p\hat{j}$$
  
 $A = \sqrt{2^2 + 4^2} = \sqrt{20}$ 

$$B = \sqrt{5^2 + p^2}$$

$$\vec{A} \cdot \vec{B} = 10 - 4p$$

If 
$$\vec{A} \parallel \vec{B}$$
 then

$$\vec{A} \cdot \vec{B} = AB \cos 0^{\circ} = AB$$

$$10 - 4p = \sqrt{20}\sqrt{25 + p^2}$$

Square 
$$100+16p^2-80p$$

$$= 20(25 + p^2) = 500 = 20p^2$$

or 
$$20p^2 - 16p^2 + 80p + 400 = 0$$

or 
$$p^2 + 20p + 100 = 0$$

or 
$$(p+10)^2 = 0$$

$$p = -10$$

$$\vec{B} = 5\hat{i} + 10\hat{j}$$

$$B = \sqrt{5^2 + (10)^2} = \sqrt{125} = 5\sqrt{5}$$

In uniform circular motion only centripetal acceleration works

Given, 
$$r = 40 \text{ m}$$
 and  $g = 10 \text{m/s}^2$ 

we have 
$$v = \sqrt{gr}$$

$$= 10 \times 40 = \sqrt{400}$$

$$= 20 \text{ m/s}$$

$$T = \frac{2u\sin\theta}{g} = 10 \operatorname{Sec} \Rightarrow u\sin\theta = 50 \, m/s$$

$$\therefore H = \frac{u^2 \sin^2 \theta}{2a} = \frac{(u \sin \theta)^2}{2a} = \frac{50 \times 50}{2 \times 10} = 125 m$$

### 40 (b)

Refer figure are when projectile is at A, then



$$OC = \frac{R}{2} = \frac{1}{2} \frac{u^2}{g} \sin 2\theta = \frac{1}{2} \times \frac{(20\sqrt{2})^2}{10} \sin 2 \times 45^\circ$$

$$= 40 \, \text{m}$$

$$AC = H = \frac{u^2 \sin^2 \theta}{2g} = \frac{(20\sqrt{2})^2}{2 \times 10} \sin^2 45^\circ$$

$$\therefore$$
 Displacement,  $OA = \sqrt{OC^2 + CA^2} =$ 

$$\sqrt{40^2 + 20^2}$$

Time of projectile from O to A

$$=\frac{1}{2}\left(\frac{2u\sin\theta}{g}\right)=\frac{u\sin\theta}{2g}=\frac{\left(20\sqrt{2}\right)\sin 45^{\circ}}{10}=2s$$

$$\therefore \text{ Average velocity } = \frac{\text{displacement}}{\text{time}}$$

$$=\frac{\sqrt{40^2+20^2}}{2}=10\sqrt{5}\,\mathrm{ms}^{-1}$$

Maximum height 
$$H = \frac{u^2 \sin^2 \theta}{2g}$$

and times of flight 
$$T = \frac{2u\sin\theta}{g}$$

or 
$$T^2 = \frac{4u^2\sin^2\theta}{g^2}$$

$$\frac{T^2}{H} = \frac{8}{g}$$

or 
$$T = \sqrt{\frac{8H}{g}} = 2\sqrt{\frac{2H}{g}}$$

### 42 (d)

$$\frac{mv^2}{r} = 10 \Rightarrow \frac{1}{2} mv^2 = 10 \times \frac{r}{2} = 1J$$

### 43 (c)

In a vertical circular motion, centripetal force remains same at all points on circular path and always directed towards the centre of circular

### 44 (b)

Given, 
$$|\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B}$$

$$AB \sin \theta = \sqrt{3} AB \cos \theta$$

or 
$$\tan \theta = \sqrt{3}$$

$$\theta = 60^{\circ}$$

### 45 (d)

The resultant of 5 N along OC and 5 N along OA is

$$R = \sqrt{6^2 + 6^2}$$

$$=\sqrt{72}$$
 N along  $OB$ 

The resultant of  $\sqrt{72}$  N along OB and  $\sqrt{72}$  N along

$$R' = \sqrt{72 + 72} = 12$$
N along *OE*.

Here, 
$$r = 7 \text{ m}, v = 5 \text{ ms}^{-1}, \theta = ?$$

$$\tan \theta = \frac{v^2}{rg} = \frac{5 \times 5}{7 \times 9.8} = 0.364$$

$$\theta = \tan^{-1}(0.364) = 20^{\circ}$$

$$H = \frac{v^2 \cos^2 \beta}{2g} \text{ or } v \cos \beta = \sqrt{2gH}$$

$$t = \frac{v \cos \beta}{g} = \frac{\sqrt{2gH}}{g} \text{ or } t = \sqrt{\frac{2H}{g}}$$

48 (c)

As seen from the cart, the projectile moves vertically upward and comes back

The time taken by cart to cover 80 m

$$\frac{s}{v} = \frac{80}{30} = \frac{8}{3} s$$

For a projectile going upward, a = -g =

$$-10 \ m/s^2, v=0$$

And 
$$t = \frac{8/3}{2} = \frac{4}{3} s$$

$$\therefore v = u + a \ t \Rightarrow 0 = u - 10 \times \frac{4}{3} \Rightarrow u = \frac{40}{3} \ ms^{-1}$$

49 (a)

In figure,  $T \sin \theta = \frac{mv^2}{r}$ ;  $T \cos \theta = mg$ ;



So, 
$$\tan \theta = \frac{v^2}{rg} = \frac{r}{\sqrt{l^2 - r^2}}$$

$$v = \left[\frac{r^2 g}{(l^2 - r^2)^{1/2}}\right]^{1/2} = \left[\frac{0.09 \times 10}{(0.25 - 0.09)^{1/2}}\right]^{1/2}$$

 $= 1.5 \text{ ms}^{-1}$ 

50 (c)

$$\tan 90^\circ = \frac{B\sin\theta}{A + B\cos\theta}$$
 or  $A + B\cos\theta = 0$ 

or 
$$cos\theta = -A/B$$
 ....(i)

$$R = \frac{B}{2} = [A^2 + B^2 + 2AB\cos\theta]^{1/2}$$

or 
$$\frac{B^2}{4} = A^2 + B^2 + 2AB(-A/B) = B^2 - A^2$$

or 
$$\frac{A^2}{B^2} = \frac{3}{4}$$
 or  $\frac{A}{B} = \frac{\sqrt{3}}{2}$ 

From (i), 
$$\cos\theta = -\frac{\sqrt{3}}{2} = \cos 150^\circ$$

From, 
$$\tan \theta = \frac{v^2}{rg}$$

$$r = \frac{v^2}{g \tan \theta} = \frac{10 \times 10}{10 \times \tan 45^\circ} = 10 \text{ m}$$

53 (d)

For looping the loop minimum velocity at the lowest point should be  $\sqrt{5gl}$ 

54 **(b)** 

$$a_{resultant} = \sqrt{a_{radial}^2 + a_{tangential}^2} = \sqrt{\frac{v^4}{r^2} + a^2}$$

$$\vec{P} + \vec{Q} = \hat{i}$$

$$\vec{Q} = \hat{i} - \hat{i} + \hat{j} - \hat{k}$$
$$= \hat{j} - \hat{k}$$

56 (b)

Let the angle of projection be  $\alpha$ .

$$\therefore \text{ Range, } R = \frac{u^2 \sin 2\alpha}{a}$$

and maximum height  $H = \frac{u^2 \sin^2 \alpha}{2\pi}$ 

Now, it is given that,

 $(Range)^2 = 48(maximum height)^2$ 

$$\therefore \left(\frac{u^2 \sin 2\alpha}{g}\right)^2 = 48 \left(\frac{u^2 \sin^2 \alpha}{2g}\right)^2$$

or 
$$\frac{u^2 \sin 2\alpha}{g} = 4\sqrt{3} \left( \frac{u^2 \sin^2 \alpha}{2g} \right)$$

or 
$$\frac{2\sin\alpha\cos\alpha}{4\sqrt{3}} = \frac{\sin^2\alpha}{2}$$

or 
$$\tan \alpha = \frac{4}{4\sqrt{3}} = \frac{1}{\sqrt{3}}$$

57 (d)

> There is no loss of energy. Therefore the final velocity is the same as the initial velocity

58 (a)

> The velocity should be such that the centripetal acceleration is equal to the acceleration due to gravity  $ie, v^2/R = g$  or  $v = \sqrt{gR}$

59

Here,  $m = 2 \text{ kg}, r = 1 \text{ m}, v = 4 \text{ ms}^{-1}$ 

Tension at the bottom of the circle,

$$T_L = mg + \frac{mv^2}{r}$$
  
= 2 × 10 +  $\frac{2 \times 4^2}{r}$  = 52

$$= 2 \times 10 + \frac{2 \times 4^2}{1} = 52N$$

60 (c)

Here, 
$$h = \frac{u^2 \sin^2 \theta}{2g}$$
 or  $\sqrt{\frac{2h}{g}} = \frac{u \sin \theta}{g}$ 

Time of flight, 
$$T = \frac{2u \sin \theta}{g} = 2\sqrt{\frac{2h}{g}}$$

61 (d)

Centripetal force 
$$F = -\frac{k}{r^2}$$

$$\frac{mv^2}{r} = \frac{k}{r^2} \Longrightarrow mv^2 = \frac{k}{r}$$

Kinetic energy 
$$=\frac{1}{2}mv^2 = \frac{k}{2r}$$

Since the centripetal force is a conservative force, and for a conservative force,

$$F = \frac{dU}{dr} \Longrightarrow U = -\int F \cdot dr$$



$$U = \int \frac{k}{r^2} dr = -\frac{k}{r}$$

Toatal energy =  $K + U = \frac{k}{2r} - \frac{k}{r} = -\frac{k}{2r}$ 

62 (d

$$\vec{A} \times \vec{B} = (\hat{i} - 2\hat{j} + 3\hat{k}) \times (3\hat{i} - 2\hat{j} + \hat{k})$$

$$= -2\hat{k} - \hat{j} - 6(-\hat{k}) - 2\hat{i} + 9\hat{j} - 6(-\hat{i})$$

$$= 4\hat{i} + 8\hat{i} + 4\hat{k}$$

Modulus is  $\sqrt{4^2 + 8^2 + 4^2} = \sqrt{32 + 64}$ =  $\sqrt{96} = 4\sqrt{6}$  units.

63 **(b)** 

$$\hat{\mathbf{n}} = \frac{\vec{\mathbf{A}} \times \vec{\mathbf{B}}}{AB\sin\theta} = \frac{A\hat{\mathbf{A}} \times B\hat{\mathbf{B}}}{AB\sin\theta} = \frac{\hat{\mathbf{A}} \times \hat{\mathbf{B}}}{\sin\theta}$$

64 (c)

Horizontal range 
$$R = \frac{u^2 \sin 2\theta}{g}$$

Substituting the given values we get

$$560 = \frac{82 \times 82 \times \sin 2\theta}{9.8}$$

$$\Rightarrow \sin 2\theta = \frac{560 \times 9.8}{82 \times 82} = \frac{5488}{6724}$$

$$\Rightarrow \sin 2\theta = 0.82 \Rightarrow 2\theta = \sin^{-1}(0.82)$$

$$\Rightarrow 2\theta = 55.1^{\circ} \Rightarrow \theta \approx 27^{\circ}$$

65 (c)

From  $v=r\omega$ , when v is doubled and  $\omega$  halved, r must be 4 times. Therefore, centripetal acceleration

$$=\frac{v^2}{r}=r\omega^2$$
 will remain unchanged

66 (d)

Angular momentum is an axial vector. It is directed always in a fix direction (perpendicular to the plane of rotation either outward or inward), if the sense of rotation remain same

68 (c)

$$R_{\text{max}} = \frac{u^2}{g} = 100 \Rightarrow u = 10\sqrt{10} = 32 \text{ m/s}$$

69 (a)

Maximum height, 
$$H = \frac{u^2 \sin^2 \theta}{2g}$$

Range, 
$$R = \frac{u^2 \sin 2\theta}{g}$$

Given, 
$$H = \frac{R}{2}$$

$$\therefore \frac{u^2 \sin^2 \theta}{2q} = \frac{u^2 2 \sin \theta \cos \theta}{2q}$$

or  $sin\theta = 2cos\theta$ 

or  $tan\theta = 2$ 

or 
$$\theta = \tan^{-1}(2)$$

70 **(b)** 

$$v = r\omega = 0.5 \times 70 = 35m/s$$

71 (a)

In uniform circular motion the only force acting on the particle is centripetal (towards centre). Torque of this force about the centre is zero. Hence angular momentum about centre remains conserved.

72 (a)

Horizontal velocity of aeroplane,

$$u = \frac{216 \times 1000}{60 \times 100} = 60 \text{ ms}^{-1}$$

Time of flight, 
$$T = \sqrt{\frac{2s}{g}} = \sqrt{\frac{2 \times 1960}{9.8}} = 20s$$

Horizontal range, AB = uT

$$= 60 \times 20 = 1200$$
m

73 (d)

$$\sqrt{P^2 + Q^2 + 2PQ\cos\theta} = (P - Q)$$

$$\Rightarrow P^2 + Q^2 + 2PQ\cos\theta = P^2 + Q^2 - 2PQ$$

$$\Rightarrow 2PQ(1 + \cos\theta) = 0$$
but  $2PQ \neq 0$ 

$$\therefore 1 + \cos\theta = 0 \text{ or } \cos\theta = -1$$
or  $\theta = 180^\circ$ 

74 **(b)** 

Range  $=\frac{u^2 \sin 2\theta}{g}$ . It is clear that range is proportional to the direction (angle) and the initial speed.

75 (a)

Displacement ,  $\vec{r} = (\vec{r}_2 - \vec{r}_1)$  and workdone =  $\vec{F}$ .  $\vec{r}$ 

76 (a)

From 
$$F = -\frac{dU}{dr}$$
,  $dU = -F dr$ 

$$U = \int -F \, dr = \int \frac{K}{r^2} \, dr = -\frac{K}{r}$$

$$KE = \frac{1}{2}PE = \frac{K}{2r}$$

Total energy = KE + PE

$$=\frac{K}{2r}-\frac{K}{r}=-\frac{K}{2r}$$

77 (a

$$\vec{F} = F_x \hat{i} + F_y \hat{j} \quad \text{or} \quad \vec{F} = 2\hat{i} - 3\hat{j}.$$

8 (d

$$h = \frac{5}{2}r \Rightarrow r = \frac{2}{5} \times h = \frac{2}{5} \times 5 = 2 \text{ metre}$$

79 (c)

Let  $\,v$  be the velocity of particle when it makes 30° with horizontal. Then



 $v \cos 30^{\circ} = u \cos 60^{\circ}$ 

or 
$$v = \frac{u\cos 60^{\circ}}{\cos 30^{\circ}} = \frac{20(\frac{1}{2})}{(\frac{\sqrt{3}}{2})} = \frac{20}{\sqrt{3}} \text{ms}^{-1}$$

Now, 
$$g \cos 30^\circ = \frac{v^2}{R}$$

or 
$$R = \frac{v^2}{g\cos 30^\circ} = \frac{\left(\frac{20}{\sqrt{3}}\right)^2}{(10)\frac{\sqrt{3}}{2}}$$

$$= 15.4 \text{ m}$$

80 (d)

$$p = mv \cos \theta$$

= 
$$1 \times 10 \times \cos 60^{\circ} = 10 \left(\frac{1}{2}\right) \text{kg ms}^{-1}$$
  
=  $5 \text{ kg ms}^{-1}$ 

81 (d)

Momentum, speed and kinetic energy change continuously in a vertical circular motion. The physical quantity which remains constant is the total energy.

82 (d)

Maximum tension =  $m\omega^2 r = m \times 4\pi^2 \times n^2 \times r$ By substituting the values we get  $T_{\text{max}} = 87.64 \, N$ 

83 (d)

$$v\cos\beta = u\cos\alpha$$

$$v = \frac{u \cos \alpha}{\cos \beta}$$

$$\alpha = \frac{\omega_2 - \omega_1}{t} = \frac{2\pi v_2 - 2\pi v_1}{t}$$

$$= \frac{2\pi \left(\frac{1200}{60} - \frac{600}{60}\right)}{10} = 2\pi \text{ rads}^{-2}$$

$$t = \sqrt{\frac{2h}{g}}, x = v\sqrt{\frac{2h}{g}} \text{ or } v = x\sqrt{\frac{g}{2h}}$$

Here, 
$$r = 50 \text{ m}$$

As  $\tan \theta = \frac{v^2}{rg}$ , therefore, when speed v is doubled; 92

r must be made 4 times, if  $\theta$  remains the same

: New radius of curvature,

$$r' = 4r = 4 \times 50 \text{ m} = 200 \text{ m}$$

87 (a)

Using the equation for projectile motion,

$$y = x \tan \theta - \frac{gx^2}{2u^2} (1 + \tan^2 \theta)$$
, we have

$$40 = 30 \tan \theta - \frac{g(30)^2}{2u} (1 + \tan^2 \theta)$$

or  $900 \tan^2 \theta - 6u^2 \tan \theta + (900 + 8u^2) = 0$ 

For real value of  $\theta$ 

$$(6u^2)^2 \ge 4 \times 900(900 + 8u^2)$$

or 
$$(u^4 - 800u^2) \ge 90000$$

or 
$$(u^2 - 400)^2 \ge 200000$$
  
or  $u^2 \ge 900$  or  $u \ge 30 \text{ms}^{-1}$ 

or 
$$u^2 \ge 900$$
 or  $u \ge 30 \text{ms}^{-1}$ 

88 (c)

> Frequency of wheel,  $v = \frac{300}{60} = 5$  rps. Angle described by wheel in one rotation =  $2\pi$  rad. Therefore, angle described by wheel in 1 s =  $2\pi \times$  $5 \text{ rad} = 10\pi \text{ rad}$

89 (a)

> Horizontal component of velocity  $v_x = 25 \cos 60^\circ = 12.5 \, m/s$ Vertical component of velocity

$$v_v = 25 \sin 60^\circ = 12.5\sqrt{3} \, m/s$$



Tim to over 50 m distance  $t = \frac{50}{12.5} = 4 sec$ 

The vertical height y is given by

$$y = v_y t - \frac{1}{2}gt^2 = 12.5\sqrt{3} \times 4 - \frac{1}{2} \times 9.8 \times 16$$
$$= 8.2 m$$

90 (c)

For water not to spill out of the bucket,  $v_{\min} = \sqrt{5gR}$  (at the lowest point)

$$=\sqrt{5 \times 10 \times 0.5} = 5 \text{ ms}^{-1}$$

91

Here,  $m = 5 \text{ kg}, r = 2 \text{ m}, v = 6 \text{ ms}^{-1}$ 

The tension is maximum at the lowest point

$$T_{\text{max}} = mg + \frac{mv^2}{r}$$
$$= 5 \times 9.8 + \frac{5 \times 6 \times 6}{2}$$
$$= 139N$$

(a)

As the body just completes the circular path, hence critical speed at the highest point.

$$v_H = \sqrt{gR}$$

which is totally horizontal.

As the string breaks at the highest point, hence form here onwards the body will follow parabolic path. Time taken by the body to reach the ground

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 2R}{g}}$$

Hence, horizontal distance covered by the body  $= v_H \times t$ 



$$= \sqrt{gR} \times \sqrt{\frac{4R}{g}} = 2R$$

$$v = \sqrt{\mu rg} = \sqrt{0.25 \times 40 \times 10} = 10 \text{ m/s}$$

$$\alpha = \frac{\omega}{t}$$
 and  $\omega = \frac{\theta}{t}$ 

$$\therefore \alpha = \frac{\theta}{t^2}$$

But  $\alpha = constant$ 

So, 
$$\frac{\theta_1}{\theta_1 + \theta_2} = \frac{(2)^2}{(2+2)^2}$$

or 
$$\frac{\theta_1}{\theta_1 + \theta_2} = \frac{1}{4}$$

or 
$$\frac{\theta_1 + \theta_2}{\theta_1} = \frac{4}{1}$$

or 
$$\frac{\theta_1 + \theta_2}{\theta_1} = \frac{4}{1}$$
or 
$$1 + \frac{\theta_2}{\theta_1} = \frac{4}{1}$$

$$\therefore \frac{\theta_2}{\theta_1} = 3$$

95 (d)

As momentum is vector quantity



: change in momentum

$$\Delta P = 2mv \sin(\theta/2)$$

$$=2mv\sin(90)=2mv$$

But kinetic energy remains always constant so change in kinetic energy is zero

96 (a)

The shape of free surface of water is parabolic, because of difference in centrifugal force (F = $mr\omega^2$ , which is proportional to r)

$$\vec{A} = \hat{i} + \hat{j} + \hat{k}; A = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$

$$\cos\theta = \frac{\vec{A}\cdot\hat{i}}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$= \frac{1.732}{3} = 0.5773 = \cos 54^{\circ} 44'$$

98 (d)

For body to move on circular path. Frictional force provides the necessary centripetal force, ie, frictional force = centripetal force

or 
$$\mu mg = \frac{mv_0^2}{r} = mr\omega^2$$

or 
$$\mu g = r\omega^2$$

$$0.5 \times 9.8 = 10 \,\omega^2$$

or 
$$\omega = 0.7 \text{ rad s}^{-1}$$

Horizontal range, 
$$R = \frac{u^2 \sin^2 45^\circ}{2g} = \frac{u^2}{g}$$

Maximum height, 
$$H = \frac{u^2 \sin^2 45^\circ}{a} = \frac{u^2}{4a}$$

$$\therefore \frac{R}{H} = \frac{4}{1}$$

100 (a)

Because the reaction on inner wheel decreases and becomes zero. So it leaves the ground first

101 (c)

$$V\cos\beta = v\cos\theta$$

or 
$$V = v \cos \theta \sec \beta$$

102 (b)

Given 
$$(KE)_{\text{highest}} = \frac{1}{2}(KE)$$

$$\frac{1}{2}mv^2\cos^2\theta = \frac{1}{2}.\frac{1}{2}mv^2$$

$$\cos^2 \theta = \frac{1}{2} \Rightarrow \cos \theta = \sqrt{\frac{1}{2}}$$

$$\Rightarrow \theta = 45^{\circ}$$

103 (a)

The horizontal range 
$$R_x = \frac{u^2 \sin 2\theta}{a}$$

When projected at angle of 15

$$R_{x1} = \frac{u^2}{g}\sin(2 \times 15) = \frac{u^2}{2g} = 1.5$$
km

When projected at angle of 45°

$$R_{x1} = \frac{u^2}{g}\sin(2\times45^\circ)\frac{u^2}{g}$$

$$= \frac{2u^2}{2g} = 2 \times 1.5 = 3.0 \text{ km}$$

105 (d)

In complete revolution total displacement is zero so average velocity is zero

For banking 
$$\tan \theta = \frac{v^2}{Rg}$$

$$\tan 45 = \frac{V^2}{90 \times 10} = 1$$

$$V = 30 \, m/s$$

107 (a)

$$\vec{A} = A\vec{A}$$
 or  $\vec{A} = \frac{A}{A}$ 

$$\therefore \text{ required unit vector is } \frac{\hat{\mathbf{1}} + \hat{\mathbf{j}}}{|\hat{\mathbf{1}} + \hat{\mathbf{j}}|} = \frac{\hat{\mathbf{1}} + \hat{\mathbf{j}}}{\sqrt{2}}$$

108 (a)

$$v = \sqrt{rg}$$

$$2r - \frac{2v^2}{r} - \frac{2 \times 9.8 \times 9.8}{r} - 19.6 \text{ g}$$

$$2r = \frac{2v^2}{g} = \frac{2 \times 9.8 \times 9.8}{9.8} = 19.6 \text{ m}$$





When the force acting on a body is directed towards a fixed point, then it changes only the direction of motion of the body without changing its speed. So, the particle will describe a circular motion

## 110 (b)

The figure shows a circular path of moving particle. At any instant velocity of particle.



 $v = -3\hat{i} - 4\hat{j} = (-3, -4)$  (in coordinate from). The coordinates of velocity show that particle is in 3rd quadrant at that instant. While moving clockwise particle will enter into 4th quadrant and these into 3rd and while moving anticlockwise particle will enter into 2nd quadrant and then into 3rd quadrant.  $\therefore$  4th and 2nd quadrants.

## 111 (a)

Retarding force  $F = ma = \mu R = \mu mg$  $a = \mu g$ 

Now, from equation of motion,  $v^2 = u^2 - 2as$ 

$$\therefore s = \frac{u^2}{2a} = \frac{u^2}{2ua} = \frac{v_0^2}{2ua}$$

#### 112 (a)

$$a = \omega^2 R = \left(\frac{2\pi}{0.2\pi}\right)^2 (5 \times 10^{-2}) = 5 \, m/s^2$$

### 113 (c)

$$v = 36\frac{km}{h} = 10\frac{m}{s} : F = \frac{mv^2}{r} = \frac{500 \times 100}{50}$$

# 114 (a)

$$\tan \theta = \frac{h}{b} = \frac{v^2}{rg},$$

$$v = \sqrt{\frac{hrh}{b}} = \sqrt{\frac{1.5 \times 50 \times 10}{10}} = 8.5 \text{ ms}^{-1}$$

### 115 (b)

$$v_x = v \cos(\alpha - \theta)$$
;  $v_y = v \sin(\alpha - \theta)$   
 $a_x = -g \sin \theta$ ;  $a_y = -g \cos \theta$ 



If T is the time of flight, then

$$0 = v \sin(\alpha - \theta) \cdot T - \frac{1}{2} g \cos \theta \cdot T^2$$

or 
$$T = \frac{2v\sin(\alpha-\theta)}{g\cos\theta}$$

$$OB = v \cos \alpha \times T$$

Now, 
$$\cos \theta = \frac{OB}{OA}$$
 or  $OA = \frac{OB}{\cos \theta}$ 

or 
$$OA = \frac{v \sin \alpha T}{\cos \theta}$$

or 
$$OA = v \cos \alpha \times \frac{2v \sin(\alpha - \theta)}{g \cos \theta} \times \frac{1}{\cos \theta}$$

or 
$$OA = \frac{v^2}{g\cos^2\theta} [\sin(2\alpha - \theta)\cos\alpha]$$

or 
$$OA = \frac{v^2}{g\cos^2\theta} [\sin(2\alpha - \theta) + \sin(-\theta)]$$

or 
$$OA = \frac{v^2}{g \cos^2 \theta} [\sin(2\alpha - \theta) - \sin \theta]$$

Clearly, the range R (= OA) will be maximum when  $\sin (2a - \theta)$  is maximum, ie, 1.

This would mean

$$2 \alpha - \theta = \frac{\pi}{2} \text{ or } \alpha \frac{\theta}{2} + \frac{\pi}{4}$$

Maximum range up the inclined plane,

$$R_{\text{max}} = \frac{v^2}{g\cos^2\theta} (1 - \sin\theta) = \frac{v^2 (1 - \sin\theta)}{g(1 - \sin^2\theta)}$$
$$= \frac{v^2 (1 - \sin\theta)}{g(1 - \sin\theta)(1 + 1 - \sin\theta)} = \frac{v^2}{g(1 + \sin\theta)}$$

#### 116 (b)

$$R_{\text{max}} = \frac{u^2}{g} = 16 \times 10^3$$
$$\Rightarrow u = 400 m/s$$

#### 117 (c)

Because horizontal velocity is same for coin and the observer. So relative horizontal displacement will be zero

#### 118 (c)

As,  $\vec{A} \cdot \vec{B} = 0$  so  $\vec{A}$  is perpendicular to  $\vec{B}$ . Also  $\vec{A} \cdot \vec{C} = 0$  means  $\vec{A}$  is perpendicular to  $\vec{C}$ . Since  $\vec{B} \times \vec{C}$  is perpendicular to  $\vec{B}$  and  $\vec{C}$ , so  $\vec{A}$  parallel to  $\vec{B} \times \vec{C}$ .

#### 119 (b)

Given, 
$$y = 12x - \frac{3}{4}x^2$$
  
 $u_x = 3 \text{ ms}^{-1}$   
 $v_y = \frac{dy}{dt} = 12\frac{dx}{dt} - \frac{3}{2}x\frac{dx}{dt}$ 



At 
$$x = 0$$
,  $v_y = u_y = 12 \frac{dx}{dt} = 12u_x = 12 \times 3 = 36 \text{ ms}^{-1}$ 

$$a_y = \frac{d}{dt} \left( \frac{dy}{dt} \right) = 12 \frac{d^2x}{dt^2} - \frac{3}{2} \left( \frac{dx}{dt} + x \frac{d^2x}{dt^2} \right)$$

But 
$$\frac{d^2x}{dt^2} = a_x = 0$$
, hence

$$a_y = -\frac{3}{2}\frac{dx}{dt} = -\frac{3}{2}u_x = -\frac{3}{2} \times 3 - \frac{9}{2} \text{ms}^{-2}$$

Range 
$$R = \frac{2u_x u_y}{a_y} = \frac{2 \times 3 \times 12}{9/2} = 16 \text{m}$$

## 120 (c)

They have same  $\omega$ 

Centripetal acceleration =  $\omega^2 r$ 

$$\frac{a_1}{a_2} = \frac{\omega^2 r_1}{\omega^2 r_2} = \frac{r_1}{r_2}$$

## 121 (c)

$$a_T = \frac{dv}{dt} = \frac{d}{dt}(2t) = 2m/s^2$$

$$a_c = \frac{V^2}{r} = \frac{(2 \times 3)^2}{30 \times 10^{-2}} = 120 \text{ m/s}^2$$

## 122 (d)

Let  $\vec{u}_1$  and  $\vec{u}_2$  be the initial velocities of the two particles and  $\theta_1$  and  $\theta_2$  be their angles of projection with the horizontal

The velocities of the two particles after time t are,

$$\vec{\mathbf{v}}_1 = (u_1\cos\theta_1)\hat{\mathbf{i}} + (u_1\sin\theta_1 - \mathrm{g}t)\hat{\mathbf{j}}$$
 and

$$\vec{\mathbf{v}}_1 = (u_1 \cos \theta_1)\hat{\mathbf{i}} + (u_2 \sin \theta_2 - \mathbf{g}t)\hat{\mathbf{j}}$$

Their relative velocity is 
$$\vec{\mathbf{v}}_{12} = \vec{\mathbf{v}}_1 - \vec{\mathbf{v}}_2$$

$$= (u_1 \cos \theta_1 - u_2 \cos \theta_1) \hat{\mathbf{i}} + (u_1 \sin \theta_1 - u_2 \sin \theta_2) \hat{\mathbf{j}}$$

Which is a constant. So the path followed by one, as seen by the other is a straight line, making a constant angle with the horizontal

#### 123 (c)

Centripetal force is provided by friction, so

$$\frac{mv^2}{r} < f_L ie, \frac{mv^2}{r} < \mu mg$$

i.e., 
$$v < \sqrt{\mu gr}$$
 so that,  $v_{\text{max}} = \sqrt{\mu gr}$ 

Here,  $\mu = 0.4, r = 30 \text{m} \text{ and } g = 10 \text{ms}^{-2}$ 

$$\therefore v_{\text{max}} = \sqrt{0.4 \times 30 \times 10} = 11 \text{m/s}$$

#### 124 (c)

$$P + Q = 16 (i)$$

$$P^2 + Q^2 + 2PQ\cos\theta = 64 \tag{ii}$$

$$\tan 90^{\circ} = \frac{Q\sin\theta}{P + Q\cos\theta}$$

$$\infty = \frac{Q \sin \theta}{P + Q \cos \theta}$$

$$\Rightarrow P + Q\cos\theta = 0 \text{ or } Q\cos\theta = -P$$

From Eq. (ii)

$$P^2 + Q^2 + 2P(-P) = 64$$
 or  $Q^2 - P^2 = 64$ 

or 
$$(Q - P)(Q + P) = 64$$

or 
$$Q - P = \frac{64}{16} = 4$$
 (iii)

Adding Eq. (i) and (iii), we get

$$2Q = 20$$
 or  $Q = 10$  units

From (i), 
$$P + 10 = 16$$
 or  $P = 6$  units

## 125 (c)

Let A and B be the two forces. As per question

$$\sqrt{A^2 + B^2} = 5$$

or 
$$A^2 + B^2 = 25$$
 (ii

and 
$$A^2 + B^2 + 2AB\cos 120^\circ = 13$$

or 
$$25 + 2AB \times (-1/2) = 13$$

or 
$$AB = 25 - 13 = 12$$

or 
$$2AB = 24$$
 (ii)

$$A = 3N$$

and 
$$B = 4 \text{ N}$$

## 126 (a)

Range of the projectile on an inclined plane (down the plane) is,

$$R = \frac{u^2}{\text{gcos}^2 \beta} [\sin(2\alpha + \beta) + \sin \beta]$$

Here, 
$$u = v_0$$
,  $\alpha = 0$  and  $\beta = \theta$ 

$$\therefore R = \frac{2v_0^2 \sin \theta}{g \cos^2 \theta}$$



Now 
$$x = R \cos \theta = \frac{2v_0^2 \tan \theta}{g}$$

and 
$$y = -R \sin \theta = -\frac{2v_0^2 \tan^2 \theta}{g}$$

#### 127 (c)

The result follows from the definition of cross product.

## 128 (d)

Maximum height attained is given by

$$h_{\text{max}} = \frac{u^2}{2a}$$

Given,  $u = 20 \text{ms}^{-1}$ 

$$h_{\text{max}} = \frac{(20)^2}{2 \times 10} = 20 \text{m}$$

For the second body also  $h_{\text{max}} = 20 \text{m}$ 

∴ Sum of maximum height = 20m+20m=40m

#### 129 (a

$$\frac{a_R}{a_r} = \frac{\omega_{R \times R}^2}{\omega_r^2 \times r} = \frac{T_r^2}{T_R^2} \times \frac{R}{r} = \frac{R}{r} [As \ T_r = T_R]$$

130 **(b**)

$$v = r\omega = 20 \times 10 cm/s = 2m/s$$

131 (d)

Tension at the top of the circle



$$T = m\omega^2 r - mg$$
  
 $T = 0.4 \times 4\pi^2 n^2 \times 2 - 0.4 \times 9.8$   
= 115.86 N

132 (c)

$$x = 20 \times 5 = 100 \text{m}$$

$$y = \frac{1}{2} \times 10 \times 5 \times 5 = 125$$
m

$$r = \sqrt{100^2 + 125^2} = 160$$
m

133 (a)

Initial angular velocity  $\omega_0 = 0$ . Final angular velocity  $\omega = \frac{v}{r} = \frac{80}{(20/\pi)} = 4\pi \text{ rad s}^{-1}$ 

angle described,  $\theta = 4\pi$  rad

$$\therefore \text{ Angular acceleration, } \alpha = \frac{\omega^2 - \omega_0^2}{2\theta}$$

$$=\frac{(4\pi)^2-0}{2\times 4\pi}=2\pi \text{ rad s}^{-2}$$

Linear acceleration,  $a = \alpha r$ 

$$= 2\pi \times \frac{20}{\pi} = 40 \text{ ms}^{-2}$$

Maximum height 
$$H = \frac{v^2 \cos^2 \beta}{2a}$$

or 
$$v\cos\beta = \sqrt{2gH}$$

$$t = \frac{v \cos \beta}{g} = \frac{\sqrt{2gH}}{g}$$

$$t = \sqrt{\frac{2H}{g}}$$

135 (d)

In figure, 
$$\sin 30^{\circ} = \frac{AB}{OA}$$



or 
$$OA = \frac{AB}{\sin 30^{\circ}} = \frac{4}{1/2} = 8 \text{m}$$

$$\frac{T}{AO} = \frac{F}{AB} = \frac{mg}{OB}$$

$$F = \frac{AO}{AB} \times F = \frac{AO}{AB} \frac{mv^2}{r} = \frac{8}{4} \times 10 \times \frac{5^2}{4} \approx 125 \text{ N}$$

If any two vectors are parallel or equal, then the scalar triple product is zero.

137 (c)

The body crosses the top most position of a vertical circle with critical velocity, so the velocity at the lowest point of vertical circle  $u = \sqrt{5gr}$ Velocity of the body when string is horizontal is  $v^2 = u^2 - 2gr = 5gr - 2gr = 3gr$ 

 $\therefore$  Centripetal acceleration =  $\frac{v^2}{r} = \frac{3gr}{r} = 3g$ 

138 (a)

To avoid slipping friction force

$$F = \frac{mv^2}{r}$$

$$F = \frac{2000 \times 10 \times 10}{20} = 10^4 \text{ N}$$

139 (a)

Let 
$$\vec{A} + \vec{B} = \vec{R}$$
. Given  $A_x = 7$  and  $A_y = 6$ 

Also 
$$R_x = 11$$
 and  $R_y = 9$ . Therefore,  
 $B_x = R_x - A_x = 11 - 7 = 4$ 

and 
$$B_y = R_y - A_y = 9 - 6 = 3$$

Hence, 
$$B = \sqrt{B_x^2 + B_y^2} = \sqrt{4^2 + 3^2} = 5$$

140 (c)

Instantaneous velocity of rising mass after t sec

$$v_t = \sqrt{v_x^2 + v_y^2}$$

Where  $v_x = v \cos \theta$  =Horizontal component of velocity

$$v_{v} = v \sin \theta - gt$$

Vertical component of velocity

$$v_t = \sqrt{(v\cos\theta)^2 + (v\sin\theta - gt)^2}$$
$$v_t = \sqrt{v^2 + g^2t^2 - 2v\sin\theta gt}$$

141 (b)

Net acceleration in nonuniform circular motion,

$$a = \sqrt{a_t^2 + a_c^2} = \sqrt{(2)^2 + \left(\frac{900}{500}\right)^2} = 2.7 \text{ m/s}^2$$

 $a_t = tangential acceleration$ 

$$a_c$$
 = centripetal acceleration =  $\frac{v^2}{r}$ 

$$v_x = \frac{dx}{dt} = 2ct \text{ and } v_y = \frac{dy}{dt} = 2bt$$
  

$$v_x = \sqrt{v_x^2 + v_y^2} = 2t(c^2 + b^2)^{1/2}$$

143 (d)

Tension at mean position,  $mg + \frac{mv^2}{l} = 3mg$ 

$$v = \sqrt{2gl}$$

And if the body displaces by angle  $\theta$  with the

Then 
$$v = \sqrt{2gl(1 - \cos\theta)}$$



Comparing (i) and (ii),  $\cos \theta = 0 \Rightarrow \theta = 90^{\circ}$ 

$$h = (u \sin \theta)t - \frac{1}{2}gt^2$$

$$d = (u \cos \theta)t \text{ or } t = \frac{d}{u \cos \theta}$$

$$h = u \sin \theta \cdot \frac{d}{u \cos \theta} - \frac{1}{2}g \cdot \frac{d^2}{u^2 \cos^2 \theta}$$

$$u = \frac{d}{\cos \theta} \sqrt{\frac{g}{2(d \tan \theta - h)}}$$

145 (c)

Resultant acceleration

$$= \sqrt{\frac{\text{tangential}}{\text{acceleration}}^2 + \left(\frac{\text{centripetal}}{\text{acceleration}}\right)^2}$$
$$= \sqrt{a^2 + \left(\frac{v^2}{r}\right)^2} = \sqrt{\frac{v^4}{r^2} + a^2}$$

146 (d)

$$a_c = k^2 r t^4 = \frac{v^2}{r}$$
 or  $v = kr t^2$ 

The tangential acceleration is  $a_T = \frac{dv}{dt} = 2krt$ 

The tangential force on the particle,  $F_T = ma_T =$ 2mkrt

Power delivered to the particle

$$= F_T = ma_T = 2mkrt = F_T v = (2mkrt)(krt)^2$$
$$= 2mk^2r^2t^3$$

147 (c)

Tension, 
$$T = \frac{mv^2}{r} + mg\cos\theta$$
  
For,  $\theta = 30^\circ$ ,  $T_1 = \frac{mv^2}{r} + mg\cos30^\circ$   
 $\theta = 60^\circ$ ,  $T_2 = \frac{mv^2}{r} + mg\cos60^\circ \therefore T_1 > T_2$ 

Here, 
$$r = 300 \text{ m}, \mu = 0.3, \text{g} = 10 \text{ ms}^{-2}$$
  
 $v_{\text{max}} = \sqrt{\mu r \text{g}} = \sqrt{0.3 \times 300 \times 10} = 30 \text{ ms}^{-1}$   
 $= 30 \times \frac{18}{5} \text{ km h}^{-1} = 108 \text{ km h}^{-1}$ 

Let v be the velocity of projection and  $\theta$  the angle of projection

Kinetic energy at highest point

$$= \frac{1}{2}mv^2\cos^2\theta \text{ or } E_k\cos^2\theta$$

Potential energy at highest point

$$= E_k - E_k \cos^2 \theta = E_k (1 - \cos^2 \theta) = E_k \sin^2 \theta$$

Here 
$$\vec{A} - \vec{OP} = 10$$
 units along  $OP$   
 $\vec{B} - (\vec{OQ}) = 10$  units along  $OQ$   
 $\therefore \angle XOP = 30^{\circ}$  and  $\angle XOQ = 135^{\circ}$ 

$$\therefore \angle QOX' = 180^{\circ} - 135^{\circ} = 45^{\circ}$$



Resolving A and B into two rectangular components we have A cos 30° along OX and A sin 30° along OY. B cos 45° along OX' and B sin 45° along OY'.

Resultant component force along X-axis.

$$(A\cos 30^{\circ} - B\sin 45)\hat{\imath}$$

= 
$$(10 \times \sqrt{3}/2 - 10 \times 1/\sqrt{2})\hat{i} = 1.59\hat{i}$$

Resultant component force along Y-axis

$$= (A \sin 30^{\circ} + B \sin 45^{\circ})\hat{j}$$

$$= (10 \times 1/2 + 10 \times 1/\sqrt{2})\hat{j} = 12.07\hat{j}$$

151 (a)

The angle of banking,  $\tan \theta = \frac{v^2}{rg}$ 

⇒ 
$$\tan 12^{\circ} = \frac{(150)^2}{r \times 10}$$
 ⇒  $r = 10.6 \times 10^3 m$   
= 10.6 km

152 (c)

$$\vec{A} + \vec{B} = \vec{C}$$
 (given)

So, it is given that  $\vec{C}$  is the resultant of  $\vec{A}$  and  $\vec{B}$ 

$$\therefore \quad C^2 = A^2 + B^2 + 2AB\cos\theta$$

$$3^2 = 3 + 3 + 2 \times 3 \times \cos\theta$$

$$3=6\cos\theta \quad \text{or } \cos\theta = \frac{1}{2} \quad \Rightarrow \theta 60^{\circ}$$

153 (a)

At the highest point, velocity is horizontal

154 (a)

$$\vec{A} \cdot \vec{B} = 0 \Rightarrow \vec{A} \perp \vec{B}$$

Now, 
$$\vec{A} \times \vec{B} = \vec{1}$$
 or  $AB \sin \theta = 1$ 

$$AB \sin 90^{\circ} = 1$$
 or  $AB = 1 \Rightarrow A = 1$  and  $B = 1$ 

So,  $\vec{A}$  and  $\vec{B}$  are perpendicular unit vectors.

155 (d)

 $T\cos\theta$  component will cancel mg.





 $T \sin \theta$  Component will provide necessary centripetal force the ball towards center C.

$$\therefore T\sin\theta = mr\omega^2 = m(l\sin\theta)\omega^2$$

or 
$$T = ml\omega^2 \Rightarrow \omega = \sqrt{\frac{T}{ml}} \text{rad/s}$$

or 
$$\omega_{\text{max}} = \sqrt{\frac{T_{\text{max}}}{ml}} = \sqrt{\frac{324}{0.5 \times 0.5}} = 36 \text{ rad/s}$$

156 (c)

Here, 
$$v_{\text{max}} = ?$$
,  $r = 18 \text{ m, g} = 10 \text{ ms}^{-2}$ 

$$\mu = 0.2$$

$$\frac{mv_{\text{max}}^2}{r} = F = \mu R = \mu mg$$

$$v_{\text{max}} = \sqrt{\mu r g} = \sqrt{0.2 \times 18 \times 10} = 6 \text{ ms}^{-1}$$

$$= 6 \times \frac{18}{5} \,\mathrm{km} \,\mathrm{h}^{-1} = 21.6 \,\mathrm{km} \,\mathrm{h}^{-1}$$

157 (b)

$$v = \sqrt{5gR}$$

When 
$$R' = \frac{R}{4}$$

$$v' = \sqrt{5gR'} = \sqrt{5gR/4} = \frac{1}{2}\sqrt{5gR} = \frac{1}{2}v$$

158 (b)

Given, 
$$R = H$$

$$\frac{u^2\sin 2\alpha}{g} = \frac{u^2\sin^2\alpha}{2g}$$

or 
$$2 \sin \alpha \cos \alpha = \frac{\sin^2 \alpha}{2}$$

or 
$$\frac{\sin \alpha}{\cos \alpha} = 4$$
 or  $\tan \alpha = 4$ 

$$\therefore a = \tan^{-1}(4)$$

159 (b)

$$T\sin\theta = mr\omega^2 = m(l\sin\theta)\omega^2$$

or 
$$T = ml\omega^2 = ml\left(2\pi \times \frac{2}{\pi}\right)^2 = 16ml$$

$$R = mg\cos\theta - \frac{mv^2}{r}$$



When  $\theta$  decreases  $\cos \theta$  increases *i.e.*, *R* increases

162 (a)

Area of parallelogram =  $|A \times B|$ 

$$AB \sin\theta = \frac{1}{2}AB$$

$$\therefore \sin\theta = \frac{1}{2}, \theta = 30^{\circ}$$

163 (a)

$$\vec{L} = \vec{r} \times \vec{p} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 4 & 0 \\ 2 & 3 & 1 \end{vmatrix}$$

$$= \hat{i}[4 - 0] + \hat{i}[0 - 0] + \hat{k}[0 - 8] = 4\hat{i} - 8\hat{k}$$

In this problem it is assumed that particle although moving in a vertical loop but its speed remain constant

Tension at lowest point  $T_{\text{max}} = \frac{mv^2}{r} + mg$ 

Tension at highest point  $T_{\min} = \frac{mv^2}{r} - mg$ 

$$\frac{T_{\text{max}}}{T_{\text{min}}} = \frac{\frac{mv^2}{r} + mg}{\frac{mv^2}{r} - mg} = \frac{5}{3}$$

By solving we get,  $v = \sqrt{4gr} = \sqrt{4 \times 9.8 \times 2.5} =$  $\sqrt{98} \, m/s$ 

165 (b)

$$F^2 = F_1^2 + F_2^2 + 2F_1F_2\cos 90^\circ$$

or 
$$F^2 = F_1^2 + F_2^2 \Rightarrow F = \sqrt{F_1^2 + F_2^2}$$

166 (c)

For uniform circular motion  $a_t = 0$ 

$$a_r = \frac{v^2}{r} \neq 0$$

 $F = m\omega^2 R : F \propto R \ (m \text{ and } \omega \text{ are constant})$ If radius of the path is halved, then force will also become half

168 (d)

Let  $\vec{A}$ ,  $\vec{B}$  and  $\vec{C}$  be as shown in figure. Let  $\theta$  be the angle of incidence, which is also equal to the angle of reflection. Resolving these vectors in rectangular components, we have







 $\vec{A} = \sin\theta \hat{i} - \cos\theta \hat{j}$  $\vec{B} = \sin\theta \hat{i} + \cos\theta \hat{j}$  $\vec{B} - \vec{A} = 2\cos\theta \hat{i}$ or  $\vec{B} = \vec{A} + 2\cos\theta \hat{\imath}$ Now  $\vec{A} \cdot \vec{C} = 2\cos\theta \hat{j}$  or  $\vec{B} = \vec{A}\cos\theta \hat{j}$  $\vec{B} = \vec{A} - 2(\vec{A}.\vec{C})\hat{\vec{I}}$  or  $\vec{B} = \vec{A} - 2(\vec{A}.\vec{C})\vec{C}$  $(as \hat{i} = \vec{C})$ 

169 (c)

When a stone tied at the end of string is rotated in a circle, the velocity of the stone at an instant acts tangentially outwards the circle. When the string is released, the stone files off tangentially outwards ie, in the direction of velocity

170 (c)

In projectile motion given angular projection, the horizontal component velocity remains unchanged. Hence

 $v \cos \alpha = u \cos \theta$  or  $v = u \cos \theta \sec \alpha$ 

171 (d)

$$s = 0 \times 1 + \frac{1}{2} \times 9.8 \times 1 \times 1 = 4.9 \text{ m}$$

172 (d)

Minimum speed at the highest point of vertical circular path  $v = \sqrt{gR}$ 

173 (c)

When  $\theta = 180^{\circ}$ , the particle will be at diametrically opposite point, where its velocity is opposite to the initial directions of motion. The change in momentum = mv - (-mv) = 2mv(maximum). When  $\theta = 360^{\circ}$ , the particle is at the initial position with momentum m. Change in momentum mv - mv = 0 (minimum)

$$R = 4H \cot \theta$$
, if  $\theta = 45^{\circ}$  then  $R = 4H \Rightarrow \frac{R}{H} = \frac{4}{1}$ 

Maximum tension in the thread is given by

$$T_{\max} = mg + \frac{mv^2}{r}$$
  
or  $T_{\max} = mg + mrw^2$  (:  $v = r\omega$ )  
or  $\omega^2 = \frac{T_{\max} - mg}{mr}$ 

Given, 
$$T_{\text{max}} = 37 \text{ N, m} = 500\text{g} = 0.5 \text{ kg}, g$$
  
=  $\text{mg}^{-2}$ ,

$$\therefore \quad \omega^2 = \frac{37 - 0.5 \times 10}{0.5 \times 4} = \frac{37 - 5}{2}$$

or 
$$\omega^2 = 16$$

or 
$$\omega = 4 \text{ rad s}^{-1}$$

177 (a)

$$mg = 1 \times 10 = 10N, \frac{mv^2}{r} = \frac{1 \times (4)^2}{1} = 16$$

Tension at the top of circle  $=\frac{mv^2}{r} - mg = 6N$ 

Tension at the bottom of circle =  $\frac{mv^2}{r} + mg =$ 26N

178 (b)

Let v be the velocity acquired by the body at B which will be moving making an angle 45° with the horizontal direction. As the body just crosses

the well so 
$$\frac{v^2}{g} = 40$$

or 
$$v^2 = 40g = 40 \times 10 = 400$$

or 
$$v = 20 \text{ ms}^{-1}$$

Taking motion of the body from A to B along the inclined plane we have

$$u = v_0, a = -g \sin 45^\circ = -\frac{10}{\sqrt{2}} \text{ms}^{-2}$$

$$s = 20 \text{m}, v = 20 \text{ms}^{-1}$$

As 
$$v^2 = u^2 + 2as$$

$$~~\dot{}~~400 = v_0^2 + 2\left(-\frac{10}{\sqrt{2}}\right) \times 20\sqrt{2}$$

or 
$$v_0^2 = 400 + 400 = 800$$
 or  $v = 20\sqrt{2}$ ms⁻¹

179 (a)

Centripetal force

$$\frac{mv^2}{R} = ma$$

or 
$$a = \frac{v^2}{R}$$

$$\therefore \quad \frac{a_1}{a_2} = \frac{v_1^2}{v_1^2}$$

$$\therefore \quad \frac{a_1}{a_2} = \frac{v_1^2}{v_2^2}$$

Here, 
$$v_1 = v$$
,  $v_2 = 2v$ ,  $a_1 = a$   

$$\therefore \frac{a}{a_2} = \frac{v^2}{(2v)^2} = \frac{1}{4}$$

180 (c)

 $L = I\omega$ . In U. C. M.  $\omega = \text{constant}$   $\therefore L = \text{constant}$ .

181 (d)

Displacement is distance from initial to final position In 40s cyclist completes =1 round



: In 3 min(180 s) cyclist will complete  $=4\frac{1}{2}$  round Displacement for 4 round is zero.

Displacement for  $\frac{l}{2}$  round = length of diagonal  $=2\sqrt{2}$ m.



182 **(d)**

$$B_x = 10 - 6 = 4 \text{ and } B_y = 9 - 6 = 3$$
so,  $B = (B_x^2 + B_y^2)^{1/2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9}$ 

$$= \sqrt{25} = 5$$

183 (a)  

$$(2\hat{\imath} - 3\hat{\jmath} + \hat{k}). (3\hat{\imath} + 3\hat{\jmath}) = 6(\hat{\imath}.\hat{\imath}) - 6(\hat{\jmath}.\hat{\jmath}) = 0$$
184 (c)  

$$\omega = \frac{d\theta}{dt} = \frac{d}{dt} (2t^3 + 0.5) = 6t^2$$
At  $t = 2$  s,  $\omega = 6 \times (2)^2 = 24$  rad/s

185 (a)

It is obvious from considerations of symmetry that at any moment of time all of time all of the persons will be at the corners of square whose side gradually decreases (see fig.) and so they will finally meet at the centre of the square O



The speed of each person along the line joining his initial position and O will be  $v \cos 45 = v/\sqrt{2}$ As each person has displacement  $d \cos 45 = d/\sqrt{2}$ to reach the centre, the four persons will meet at the centre of the square O after time

$$\therefore t = \frac{d/\sqrt{2}}{v/\sqrt{2}} = \frac{d}{v}$$
(a)

From 
$$h = \frac{1}{2}gt^2$$
  
We have  $t_{OB} = \sqrt{\frac{2h_{OA}}{g}}$ 

$$= \sqrt{\frac{2 \times 1960}{9.8}} = 20s$$

Horizontal distance  $AB = vt_{OB}$  $=\left(600 \times \frac{5}{18}\right)(20)$ = 3333.33 m = 3.33 km

187 (a)  
Here, 
$$r = 92 \text{ m}, v = 26 \text{ ms}^{-1}, \mu = ?$$
  
As  $\frac{mv^2}{r} = F = \mu R = \mu mg$   
 $\mu = \frac{v^2}{rg} = \frac{26 \times 26}{92 \times 9.8} = 0.75$ 

38 (c)
$$\frac{u_x}{u_y} = \cot 30^\circ = \sqrt{3} : u_x = 80\sqrt{3} \text{ ms}^{-1}$$

$$T = \frac{2u_y}{g} = \frac{2 \times 80}{10} = 16 \text{ s}$$
At  $t = \frac{T}{4} = 4 \text{ s}, v_x = 80\sqrt{3} \text{ ms}^{-1}$ 

$$v_y = 80 - 10 \times 4 = 40 \text{ ms}^{-1}$$

$$\therefore 0 \ v = \sqrt{(80\sqrt{3})^2 + (40)^2} = 140 \text{ ms}^{-1}$$

189 (b) Due to air resistance, it's horizontal velocity will decrease so it will fall behind the aeroplane

$$v \cos \theta = 10 \cos 60^{\circ} = 5 \text{ ms}^{-1}$$
  
191 **(c)**  
 $v = \sqrt{\mu rg} = \sqrt{0.25 \times 80 \times 9.8} = 14 \text{ ms}^{-1}$ 

192 **(b)**

$$Tan 45^{\circ} = \frac{2\sin 60^{\circ}}{a+2\cos 60^{\circ}} = \frac{\sqrt{3}}{a+1}$$

$$1 = \frac{\sqrt{3}}{a+1}$$
or  $a+1 = \sqrt{3}$ 

$$a = \sqrt{3} - 1$$

190 (d)

193 (a)
$$|\overrightarrow{\Delta v}| = 2v \sin(\theta/2) = 2v \sin(\frac{90}{2}) = 2v \sin 45$$

$$= v\sqrt{2}$$

194 **(b)**

$$T_{\text{top}} = \frac{mv^2}{r} - mg \qquad ...(i)$$

$$T_{\text{bottom}} = \frac{mv^2}{r} + mg \quad ...(ii)$$

$$\frac{T_{\text{top}}}{T_{\text{bottom}}} = \frac{\frac{v^2}{r} - g}{\frac{v^2}{r} + g} = \frac{\frac{40 \times 40}{4} - 10}{\frac{40 \times 40}{4} + 10}$$

$$= \frac{400 - 10}{400 + 10} = \frac{390}{410} = \frac{39}{41}$$
195 **(b)**



Let  $\widehat{A} + \widehat{B} = \widehat{R}$  then using parallelogram law of vectors we have

$$1 = (1^2 + 1^2 + 2.1.1\cos\theta)^{1/2}$$

or 
$$1 = 2(1 + \cos\theta)$$

or 
$$\frac{1}{2} - 1 = \cos\theta$$

or 
$$\cos\theta = -\frac{1}{2} = \cos 120^{\circ}$$

or 
$$\theta = 120^{\circ}$$

$$\therefore |\widehat{A} - \widehat{B}| = |\widehat{A} + (-\widehat{B})|.$$

Now the angle between  $\widehat{A}$  and  $-\widehat{B}$  is  $60^{\circ}$ 

The resultant of  $|\widehat{A} + (-\widehat{B})|$ 

$$(1^2 + 1^2 + 2 \times 1 \times 1 \times \cos 60^\circ)^{1/2}$$
  
= $\sqrt{3}$ 

We know that if two stones have same horizontal range, then this implies that both are projected at  $\theta$  and  $90^{\circ} - \theta$ .

Given, 
$$\theta = \frac{\pi}{3} = 60^{\circ}$$

$$\theta^{\circ} - \theta = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

For first stone,

Maximum height = 
$$102 = \frac{u^2 \sin^2 60^\circ}{2g}$$

For second stone,

Maximum height, 
$$h = \frac{u^2 \sin^2 30^\circ}{2g}$$

$$\therefore \frac{h}{102} = \frac{\sin^2 30^\circ}{\sin^2 60^\circ} = \frac{(1/2)^2}{(\sqrt{3}/2)^2}$$

or 
$$h = 102 \times \frac{1/4}{3/4} = 34 \text{ m}$$

# 197 (b)

$$\vec{L} = \vec{r} \times m\vec{v} = H \ mv\cos\theta = \frac{v\sin^2\theta}{2g} mv\cos\theta$$
$$= \frac{mv^3}{\sqrt{g}}$$

### 198 (a)

As 
$$S = t^3 + 5$$

$$\frac{ds}{dt} = 3t^2 = v$$

$$\therefore a_t = \frac{dv}{dt} = 6t$$

at 
$$t = 2 sec$$

$$|\vec{a}| = \sqrt{a_c^2 + a_t^2}$$

$$= \sqrt{\left(\frac{v^2}{R}\right)^2 + a_t^2} = \sqrt{\left(\frac{4t^4}{R}\right)^2 + \left(\frac{dv}{dt}\right)^2}$$

$$=\sqrt{(7.2)^2+144}$$

$$|\vec{a}| = 14m/s^2$$

$$\frac{v^2}{g} = 100 \text{ or } v^2 = 100 \text{ g}$$

$$h_{\text{max.}} = \frac{v^2}{2g} = \frac{100g}{2g} = 50m$$

## 200 (b)

In going from C to A, potential energy lost = potential energy gained in going from A to B For looping the loop, minimum velocity required at B is  $\sqrt{gR}$ . This must be the velocity of push down initially from C

## 201 (b)

$$\omega_1 = 2\pi r = 2\pi \times 20, \omega_2 = 0, t = 20a, \alpha = ?$$

As 
$$\omega_2 = \omega_1 + \alpha t$$

$$\alpha = \frac{\omega_2 - \omega_1}{t} = \frac{40\pi - 0}{20} = 2\pi \text{ rad s}^{-2}$$

## 202 (d)

In non-uniform circular motion particle possess both centripetal as well as tangential acceleration

## 203 (d)

Maximum range = 
$$\frac{u^2}{g}$$
 = 100 m

Maximum height = 
$$\frac{u^2}{2g} = \frac{100}{2} = 50 m$$

## 204 (a)

Taking initial position as origin and direction of motion (*i. e.*, vertically up) as positive. As the particle is thrown with initial velocity, at highest point its velocity is zero and then it returns back to its reference position. This situation is best depicted in figure of option (a)



In figure, AB part denotes upward motion and BC part denotes downward motion

#### 205 (b)

When a body is revolving in circular motion it is acted upon by a centripetal force directed towards the center. Water will not fall if weight is balanced by centripetal force. Therefore



$$mg = \frac{mv^2}{r}$$

$$\Rightarrow v^2 = rg \dots (i)$$





Circumference of a circle is  $2\pi r$ .

Time of revoluation = 
$$\frac{2\pi r}{v}$$

Putting the value of v from Eq. (i), we get

$$T = \frac{2\pi r}{\sqrt{gr}} = 2\pi \sqrt{\frac{r}{g}}$$

Given, 
$$r = 4 \text{ m}, g = 9.8 \frac{\text{m}^2}{\text{s}}$$

$$\therefore T = 2\pi \sqrt{\frac{4}{9.8}}$$

$$\Rightarrow T = \frac{4\pi}{\sqrt{9.8}} = 4s$$

## 206 (b)

Time of flight of this particle, T=4 s. if u is its initial speed and  $\theta$  is the angle of projection, then

$$T = 4 = \frac{2u\sin\theta}{g}$$
 or  $u\sin\theta = 2g$  ...(i)

After 1 s, the velocity vector of particle makes an angle of 45° with horizontal, so

$$v_x = v_y ie, u \cos \theta = (u \sin \theta) - gt$$

or 
$$u\cos\theta = 2g - g$$
 (:  $t = 1s$ )

or 
$$u \cos \theta = g$$
 ...(ii)

Squaring and adding Eqs. (i) and (ii), we have

$$u^2 = 5g^2 = 5(10)^2 = 500$$

or 
$$u = \sqrt{500} = 22.36 \text{ ms}^{-1}$$

Dividing Eq. (i) by Eq. (ii), we have

$$\tan \theta = 2 \text{ or } \theta = \tan^{-1}(2)$$

#### 207 (b)

Centripetal force = breaking force

 $\Rightarrow m\omega^2 r$  = breaking stress × cross sectional area

$$\Rightarrow m\omega^2 r = p \times A \Rightarrow \omega = \sqrt{\frac{p \times A}{mr}}$$
$$= \sqrt{\frac{4.8 \times 10^7 \times 10^{-6}}{10 \times 0.3}}$$

$$\omega = 4 \, rad/sec$$

## 208 (d)

$$\theta = 2\pi n = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$2\pi \times 10 = \frac{1}{2} \alpha 4^2 \text{ or } \alpha = \frac{40\pi}{16}$$

Let it make N rotations in the first 8 s

Then, 
$$2\pi N = \frac{1}{2}\alpha 8^2$$

or 
$$N = \frac{1}{2\pi} \times \frac{64}{2} \times \frac{40\pi}{16} = 40$$

 $\div$  The required number of rotations

$$=40-10=30$$

#### 209 (d)

$$\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mgL$$

$$\Rightarrow v = \sqrt{u^2 - 2gL}$$

$$|\vec{v} - \vec{u}| = \sqrt{u^2 + v^2} = \sqrt{u^2 + u^2 - 2gL}$$

$$= \sqrt{2(u^2 - gL)}$$

### 210 (a)

For particle P, motion between A and C will be an accelerated one while between C and B a retarded one. But in any case horizontal component of it's velocity will be greater than or equal to v on the other hand in case of particle Q, it is always equal to v. Horizontal displacement of both the particles are equal, so  $t_P < t_Q$ 

## 211 (c)

Equation of projectile

$$y = x - \left(\frac{5}{9}\right)x^2$$

Standard equation

$$y = x \tan \theta - \frac{g}{2u^2 \cos^2 \theta} \cdot x^2$$

On comparing, we get

$$\tan \theta = 10$$

and 
$$\frac{g}{2u^2\cos^2\theta} = \frac{5}{9}$$

or 
$$10u^2\cos^2\theta = 9g$$

$$g = 10 \text{ ms}^{-2}$$

$$\therefore u^2 \cos^2 \theta = 9$$

range of projecticle  $R = \frac{2u^2 \tan \theta \cdot \cos \theta}{a}$ 

$$=\frac{2u^2\tan\theta\cdot\cos\theta}{a}$$

 $(\because \sin \theta = \tan \theta \cdot \cos \theta)$ 

$$2(u^2\cos^2\theta) \cdot \tan\theta$$

$$=\frac{2 \times 9 \times 10}{10} = 18 \text{ m}$$

#### 212 (c)

$$a = \frac{v^2}{r} = \omega^2 r = 4\pi^2 n^2 r = 4\pi^2 \left(\frac{22}{44}\right)^2 \times 1$$
$$= \pi^2 m/s^2$$

and its direction is always along the radius and towards the centre

## 213 (a)

According to law of conservation of linear momentum at the highest point.

$$mv\cos\theta = \frac{m}{2}(-v\cos\theta) + \frac{m}{2}v_1$$

# or $v_1 = 3v\cos\theta$

#### 214 (b)

On a circular path in completing one turn, the distance traveled is  $2\pi r$  while displacement is zero.







Hence, average velocity = 
$$\frac{\text{displacement}}{\text{time interval}} = \frac{0}{t} = 0$$
 | 222 **(d)** For

Average speed = 
$$\frac{\text{distance}}{\text{time interval}}$$

Average speed = 
$$\frac{\text{distance}}{\text{time interval}}$$
$$= \frac{2\pi r}{t} = \frac{2 \times 3.14 \times 100}{62.8} = 10 \text{ ms}^{-1}$$

215 (a)

$$(\overrightarrow{PO}) = \vec{r} = (2-3)\hat{i} + (-1-3)\hat{j} + (4+1)\hat{k}$$
  
=  $-1\hat{i} - 4\hat{j} + 5\hat{k}$ 

Work done = 
$$\vec{F} \cdot \vec{r}$$

$$= (4\hat{i} - 3\hat{j} + 3\hat{k}) \cdot (-1\hat{i} - 4\hat{j} + 5\hat{k})$$

$$= -4 + 12 + 15 = 23 \text{ J}$$

Note that the angle between two forces is 120° and not 60°.

$$R^2 = F^2 + F^2 + 2F^2 \cos 120^\circ$$

or 
$$R^2 = 2F^2 + 2F^2 \left(-\frac{1}{2}\right) = F^2$$

or 
$$R = F$$

217 (d)

$$v_y = \frac{d}{dt}(y) = \frac{d}{dt}(10t) - \frac{d}{dt}(t^2) = 10 - 2t$$

At maximum height,  $v_v = 0$ 

$$10 - 2t = 0$$
 or  $2t = 10$  or  $t = 5$  s

$$\therefore y = (10 \times 5 - 5 \times 5) \text{ m} = 25 \text{ m}$$

218 (a)

Given, 
$$\omega_1 = 2\pi \times 400 \text{ rad s}^{-1}$$

$$\omega_2 = 2\pi \times 200 \text{ rad s}^{-1}$$

$$\therefore \alpha = \frac{2\pi(400-200)}{2} = 200\pi \text{ rad s}^{-2}$$

219 (c)

In uniform circular motion tangential acceleration remains zero but magnitude of radial acceleration remains constant.

220 (b)

$$H_1 + H_2 = \frac{u^2}{2g} (\sin^2 30^\circ + \sin^2 60^\circ)$$
$$= \frac{20^2}{2 \times 10} (\frac{1}{4} + \frac{3}{4}) = 20 m$$

Horizontal range

$$R = \frac{u^2 \sin 2\theta}{g} \qquad ...(i)$$

Maximum height

$$H = \frac{u^2 \sin^2 \theta}{2a} \qquad ...(ii)$$

$$\frac{u^2\sin 2\theta}{g} = \frac{u^2\sin^2\theta}{2g}$$

$$2\cos\theta = \frac{\sin\theta}{2}$$

$$\theta = \tan^{-1}(4)$$

For critical condition at the highest point  $\omega =$ 

$$\Rightarrow T = \frac{2\pi}{\omega} = 2\pi\sqrt{R/g} = 2 \times 3.14\sqrt{4/9.8} = 4 \text{ sec}$$

223 (c)

Since displacement is long the Y-direction, hence displacement  $\vec{s} = 10\hat{j}$ .

Work done = 
$$\vec{F} \cdot \vec{s} = (-2\hat{\imath} + 15\hat{\jmath} + 6\hat{k}). 10\hat{\jmath} = 150 \text{ I}$$

224 (d)

$$\frac{d^2y}{dt^2} = \alpha \text{ and } \frac{d^2x}{dt^2} = 0$$

$$\frac{dy}{dt} = 2\beta x. \frac{dx}{dt}$$

$$\frac{d^2y}{dt^2} = 2\beta \left[ x. \frac{d^2x}{dt^2} + \left( \frac{dx}{dt} \right)^2 \right]$$

$$\alpha = 2\beta v_3$$

$$\therefore v_x = \sqrt{\frac{\alpha}{2\beta}}$$

225 (d)

$$\tan\theta = \frac{L}{A}$$

$$\tan 30^{\circ} = \frac{10v}{3400}$$

$$v = \frac{340}{\sqrt{3}} = 196.3 \text{ m/s}$$

226 (d)

$$v_{\text{max}} = \sqrt{\mu rg} = \sqrt{0.2 \times 100 \times 9.8} = 14 m/s$$

$$nh = \frac{1}{2}gt^2 \Rightarrow t = \sqrt{\left(\frac{2nh}{g}\right)}$$
 ...(i)

Horizontal distance travelled by ball

$$nb = ut, nb = u\sqrt{\left(\frac{2nh}{g}\right)}$$
 ....(ii)

Squaring Eq. (ii), we get

$$n^2b^2 = \frac{u^22nh}{\sigma}$$

$$\therefore n = \frac{2u^2h}{gh^2}$$

230 (b)

 $F = \frac{mv^2}{r}$ . For same mass and same speed if radius is doubled then force should be halved

231 (a)

We know that  $\tan \theta = \frac{v^2}{Ra}$  and  $\tan \theta = \frac{h}{b}$ 

Hence 
$$\frac{h}{h} = \frac{v^2}{Ra} \Rightarrow h = \frac{v^2b}{Ra}$$

232 (b)







It is a vector quantity

233 (a)

$$R = \frac{v^2 \sin 2\theta}{g} = 200, T = \frac{2v \sin \theta}{g} = 5$$

Dividing, 
$$\frac{v^2 \times 2 \sin \theta \cos \theta}{g} \times \frac{g}{2v \sin \theta} = \frac{200}{5} = 40$$

or  $v \cos \theta = 40 \text{ms}^{-1}$ 

It may be noted here that the horizontal component of the velocity of projection remains the same during the flight of the projectile

234 (c)

 $a_c = \text{centripetal acceleration}$ 

 $a_t =$ tangential acceleration

 $a_N$  = net acceleration = Resultant of  $a_c$  and  $a_t$ 



235 (a)

$$R_{\max} = R = \frac{u^2}{g}$$

$$\Rightarrow u^2 = Rg$$

Now, as range = 
$$\frac{u^2 \sin 2\theta}{g}$$

then 
$$\frac{R}{2} = \frac{Rg\sin 2\theta}{g}$$

$$\Rightarrow \sin 2\theta = \frac{1}{2} = \sin 30^{\circ} \Rightarrow \theta = 15^{\circ}$$

236 (c)

Velocity at the lowest point,  $v = \sqrt{2gl}$ 

At the lowest point, the tension in the string

$$T = mg + \frac{mv^2}{l} = mg + \frac{m}{l}(2gl) = 3mg$$

237 (a)

$$v = K(y\hat{\imath} + x\hat{\jmath})$$

$$v_x = Ky$$

$$\frac{dx}{dt} = Ky$$

Similarly,  $\frac{dy}{dt} = Kx$ 

Hence 
$$\frac{dy}{dx} = \frac{x}{y}$$

 $\Rightarrow y dy = x dx$ , by integrating

$$y^2 = x^2 + c$$

238 (d)

Tension is string = centrifugal force

In first case,  $F = m r \omega^2$ 

In second case,  $F' = m(2r)(2\omega)^2 = 8mr \omega^2 =$ 

8 F

239 (d)

At 45°, 
$$v_x = v_y$$

or 
$$u_x = u_y - gt$$

$$\therefore t = \frac{u_y - u_x}{g}$$

$$= \frac{40(\sin 60^\circ - \sin 30^\circ)}{9.8} = 1.5 \text{ s}$$

240 (d)

 $\therefore$  Angular momentum  $\vec{L} = \vec{r} \times \vec{p}$ 

Where

$$\vec{r} = v_0 \cos \theta \ t \hat{\imath} + \left( v_0 \sin \theta t - \frac{1}{2} g t^2 \right) \hat{\jmath}$$

$$\vec{p} = m[v_0 \cos \theta \,\hat{\imath} + (v_0 \sin \theta - gt)\hat{\jmath}]$$

$$\vec{L} = \vec{r} \times \vec{p} = -\frac{1}{2} mg v_0 t^2 \cos \theta \, \hat{k}$$

241 (c)

$$F = \frac{mv^2}{r} = \frac{500 \times (10)^2}{50} = 1000$$
N

242 **(b)** 

$$F = \frac{mv^2}{r} = \frac{500 \times 100}{50} = 10^3 N$$

243 (a)

At the highest point of trajectory, the velocity becomes horizontal. So, it is perpendicular to acceleration (which is directed vertically downwards)

244 (a)

Angular velocity =  $\frac{2\pi}{T} = \frac{2\pi}{24} rad/hr = \frac{2\pi}{86400} rad/s$ 

245 (a

$$H_1 = \frac{u^2 \sin^2 \theta}{2g} \text{ and } H_2 = \frac{u^2 \sin^2(90 - \theta)}{2g} = \frac{u^2 \cos^2 \theta}{2g}$$

$$H_1 H_2 = \frac{u^2 \sin^2 \theta}{2g} \times \frac{u^2 \cos^2 \theta}{2g} = \frac{(u^2 \sin 2\theta)^2}{16g^2} = \frac{R^2}{16}$$

$$\therefore R = 4\sqrt{H_1 H_2}$$

246 **(b)** 

Area in which bullet will spread =  $\pi r^2$ 

For maximum area,  $r = R_{\text{max}} = \frac{v^2}{a}$  [When  $\theta =$ 

45°

Maximum area 
$$\pi R_{\text{max}}^2 = \pi \left(\frac{v^2}{g}\right)^2 = \frac{\pi v^4}{g^2}$$

247 (a)

Time to reach max. height =  $t_m$ Time to reach back to ground =  $t_m$ Total time of flight  $T_f = t_m + t_m$ 

 $T_f = 2t_m$ 

248 (a)

Let the bead starts slipping after time t







For critical condition Frictional force provides the centripetal force

$$m\omega^2 L = \mu R = \mu m \times a_t = \mu L m\alpha$$
  
 $\Rightarrow m(\alpha t)^2 L = \mu m L \alpha$ 

$$\Rightarrow t = \sqrt{\frac{\mu}{\alpha}} \qquad [As \ \omega = \alpha t]$$
249 **(a)**

$$t = \sqrt{\frac{2h}{g}}$$

Distance from the foot of the tower

$$d = vt = v\sqrt{\frac{2h}{g}} = 250m$$

When velocity =  $\frac{v}{2}$ 

and height of tower= 4h

Then distance 
$$x = \frac{v}{2} \sqrt{\frac{2(4h)}{g}}$$

$$x = v \sqrt{\frac{2h}{g}} = 250 \text{ m}$$

$$\vec{A} \cdot \vec{B} = AB\cos\theta = 6$$

and 
$$|\vec{A} \times \vec{B}| = AB\sin\theta = 6\sqrt{3}$$

$$\therefore \frac{AB\sin\theta}{AB\cos\theta} = \frac{6\sqrt{3}}{6} = \sqrt{3}$$
or  $\tan\theta = \sqrt{3}$ 

and  $\theta = 60^{\circ}$ 

# 251 **(c)**

Using relation 
$$\theta = \omega_0 t + \frac{1}{2}at^2$$

$$\theta_1 = \frac{1}{2}(\alpha)(2)^2 = 2\alpha$$
 ...(i)

As  $\omega_0 = 0$ , t = 2 sec

Now using same equation for t=4 sec,  $\omega_0=0$ 

$$\theta_1 + \theta_2 = \frac{1}{2}\alpha(4)^2 = 8\alpha$$
 ...(ii)

From (i) and (ii),  $\theta_1 = 2\alpha$  and  $\theta_2 = 6\alpha$  :  $\frac{\theta_2}{\theta_1} = 3$ 

#### 252 (b)

$$\vec{S} = (10\hat{i} - 2\hat{j} + 7\hat{k}) - (6\hat{i} + 5\hat{j} - 3\hat{k})$$
$$= 4\hat{i} - 7\hat{j} + 10\hat{k}$$

$$\overrightarrow{W} = \overrightarrow{F} \cdot \overrightarrow{S}$$

$$= (10\widehat{i} - 3\widehat{j} + 6\widehat{k}) \cdot (4\widehat{i} - 7\widehat{j} + 10\widehat{k})$$

= (40 + 21 + 60)J = 121 J

253 **(b)** 

The amplitude is the radius of the circle

$$R = \frac{0.8}{2} = 0.4 \text{ m}$$

The frequency of the shadow is the same as that of the circular motion, so

$$\omega = 30 \text{ rev/min}$$

$$= 0.5 \text{rev/s} = \pi \text{ rads}^{-1}$$

and 
$$v = \frac{\omega}{2\pi} = \frac{\pi}{2\pi} = 0.5 \text{ Hz.}$$

## 254 (c)

$$S_x = u_x t + \frac{1}{2} a_x t^2 \Rightarrow S_x = \frac{1}{2} \times 6 \times 16 = 48 m$$

$$S_y = u_y t + \frac{1}{2} a_y t^2 \Rightarrow S_y = \frac{1}{2} \times 8 \times 16 = 64 m$$

$$S = \sqrt{S_x^2 + S_y^2} = 80 m$$

### 255 (a)

Here, 
$$r = 92 \text{ m}, v = 26 \text{ ms}^{-1}, \mu = ?$$
  
As  $\frac{mv^2}{r} = F = \mu R = \mu mg$ 

As 
$$\frac{mv^2}{r} = F = \mu R = \mu mg$$
  
 $\mu = \frac{v^2}{rg} = \frac{26 \times 26}{92 \times 9.8} = 0.75$ 

### 257 (c)

$$\vec{P} \cdot \vec{Q} = (3\hat{j} + 4\hat{k}) \cdot (2\hat{i} + 5\hat{k}) = 6 + 20 = 26$$

### 258 (b

$$v = \sqrt{2gh} = \sqrt{2 \times 10 \times 0.2} = 2 \, m/s$$

#### 259 **(b**)

$$\frac{\omega_1}{\omega_2} = \frac{T_2}{T_1} = \frac{12h}{1h} = 12:1$$

#### 260 **(c**)

Given condition  $h_1 = h_2$ 

$$u_1^2 \sin^2 45^\circ = u_2^2 \sin^2 \theta$$

$$\sin^2\theta = \frac{u_1^2}{u_2^2}\sin^2 45^\circ$$

$$=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$$

$$\sin \theta = \frac{1}{2} \Longrightarrow \theta = 30^{\circ}$$

## 261 (c)

The speed of projectile is v and angle of projection is 45°.

$$v_x = v \cos 45^\circ = \frac{v}{\sqrt{2}}$$

$$v_y = v \sin 45^\circ - gt = \frac{v}{\sqrt{2}} - gt$$

At highest point 
$$v_y = 0$$
,  $v_x = \frac{v}{\sqrt{2}}$ 

Maximum height achieved,

$$H = \frac{v^2 \sin^2 45^\circ}{2g} = \frac{v^2}{4g}$$

Now, angular momentum about O







$$=\frac{mv}{\sqrt{2}}\cdot\frac{v^2}{4g}=\frac{mv^3}{4\sqrt{2g}}$$

$$E' = E \cos^2 \theta = E \cos^2(45^\circ) = \frac{E}{2}$$

Maximum height of projectile,  $h_0 = \frac{u^2 \sin^2 \theta}{2a}$ 

$$h_0 = \frac{(10)^2 \times \sin^2 30^\circ}{2 \times 10} = \frac{5}{4} = 1.25 m$$

Time for attaining maximum height,  $t = \frac{u \sin \theta}{a}$ 

$$\therefore t = \frac{10 \times \sin 30^{\circ}}{10} = 0.5 \sec^{\circ}$$

 $\therefore$  Distance of vertical fall in 0.5 sec,  $S = \frac{1}{2}gt^2$ 

$$\Rightarrow S = \frac{1}{2} \times 10 \times (0.5)^2 = 1.25m$$

 $\therefore$  Height of second ball = 1.25 + 1.25 = 2.50m

264 (a)

When particle moves in a circle, then the resultant force must act towards the centre and its

magnitude F must satisfy,  $F = \frac{mv^2}{r}$ 

This resultant force is directed towards the centre and it is called centripetal force. This force originates from the tension T

Hence, 
$$F = \frac{mv^2}{l} = T$$

265 (c)

$$y = ax - bx^2$$

For height or y to be maximum

$$\frac{dy}{dx} = 0 \text{ or } a - 2bx = 0 \text{ or } x = \frac{a}{2b}$$

$$\therefore y_{\text{max}} = a \left(\frac{a}{2b}\right) - b \left(\frac{a}{2b}\right)^2 = \frac{a^2}{4b}$$

and 
$$\left(\frac{dy}{dx}\right)_{x=0} = a = \tan \theta$$

where  $\theta$  = angle of projection

$$\theta \tan^{-1}(a)$$

266 (c)

Displacement, 
$$\vec{r} = (a\hat{i} + a\hat{j}) - (a\hat{i}) = a\hat{j}$$

$$\vec{\mathbf{F}} = -K(y\hat{\mathbf{i}} + x\hat{\mathbf{j}}) = -K(a\hat{\mathbf{i}} + a\hat{\mathbf{j}})$$

Workdone,  $W = \vec{F} \cdot \vec{r}$ 

$$= -K(a\hat{\mathbf{i}} + a\hat{\mathbf{j}}).\,a\hat{\mathbf{j}} = -Ka^2$$

267 (c)

At the two points of the trajectory during projection, the horizontal component of the velocity is the same

$$\Rightarrow u \cos 60^{\circ} = v \cos 45^{\circ}$$

$$\Rightarrow 147 \times \frac{1}{2} = v \times \frac{1}{\sqrt{2}} \Rightarrow v = \frac{147}{\sqrt{2}} \ m/s$$

Vertical component of  $u = u \sin 60^\circ = \frac{147\sqrt{3}}{2} m$ 

Vertical component of  $v = v \sin 45^{\circ} = \frac{147}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$ 

$$=\frac{147}{2}m$$

but  $v_y = u_y + a_y^t \Rightarrow \frac{147}{2} = \frac{147\sqrt{3}}{2} - 9.8t$ 

$$\Rightarrow 9.8t = \frac{147}{2} (\sqrt{3} - 1) \Rightarrow t = 5.49 s$$

268 (b)

$$\cos\theta = \frac{(\hat{k}).(\hat{i} + \hat{j} + \sqrt{2}\hat{k})}{1\sqrt{1^2 + 1^2(\sqrt{2})^2}}$$

or 
$$\cos\theta = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$
 or  $\theta = 45^{\circ}$ 

269 (d)

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{60} = 0.1047 \, rad/s$$

And  $v = \omega r = 0.1047 \times 3 \times 10^{-2} = 0.00314 \, m/s$ 

270 (b)

Here the tangential acceleration also exists which requires power

Given that  $a_C = k^2 r t^2$  and  $a_C = \frac{v^2}{r} : \frac{v^2}{r} = k^2 r t^2$ 

Or 
$$v^2 = k^2 r^2 t^2$$
 or  $v = krt$ 

Tangential acceleration  $a = \frac{dv}{dt} = kr$ 

Now force  $F = m \times a = mkr$ 

So power  $P = F \times v = mkr \times krt = mk^2r^2t$ 

$$R_{\text{max}} = \frac{u^2}{a} = \frac{(20)^2}{10} = 40 \ m$$

$$T_L - T_H = 6 \text{ mg}$$

273 (d)

Net displacement in one loop = 0

Average velocity = 
$$\frac{\text{net displacement}}{\text{time}} = \frac{0}{t} = 0$$

Distance travelled in one rotation (loop) =  $2\pi r$ 

$$\therefore \text{ Average speed} = \frac{\text{distance}}{\text{time}} = \frac{2\pi r}{t}$$
$$= \frac{2 \times 3.14 \times 100}{62.8} = 10 \text{m/s}.$$

The angular momentum of a particle is given by

$$\vec{\mathbf{L}} = \vec{\mathbf{r}} \times m\vec{\mathbf{v}}$$

 $L = mvr \sin \theta$ 



$$L = rm(v\cos 45^\circ)\sin\theta$$

$$=\frac{mv}{\sqrt{2}}(r\sin\theta)$$



$$=\frac{mvh}{\sqrt{2}}\left(\because \sin\theta=\frac{h}{r}\right)$$

Kinetic energy = potential energy

$$\frac{1}{2}m(kv_e)^2 = \frac{mgh}{1 + \frac{h}{R}}$$

$$\Rightarrow \frac{1}{2}mk^2 2gR = \frac{mgh}{1 + \frac{h}{2}} \Rightarrow h = \frac{Rk^2}{1 - k^2}$$

Height of projectile from the earth's surface = h

Height from centre 
$$r = R + h = R + \frac{Rk^2}{1 - k^2}$$

By solving 
$$r = \frac{R}{1 - k^2}$$

277 (c)

Tension = Centrifugal force + weight =  $\frac{mv^2}{r}$  + mg

278 (a)

$$R = 2H$$
 Given

We know 
$$R = 4H \cot \theta \Rightarrow \cot \theta = \frac{1}{2}$$

From triangle we can say that  $\sin \theta = \frac{2}{\sqrt{\epsilon}}$ ,  $\cos \theta =$ 

$$\frac{1}{\sqrt{5}}$$

 $\therefore$  Range of projectile  $R = \frac{2v^2 \sin \theta \cos \theta}{a}$ 

$$=\frac{2v^2}{g} \times \frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = \frac{4v^2}{5g}$$



279 (d)

Second's hand of a watch completes its one rotation in 1 min. So, its time period is 1 min.

280 (c)

Here, 
$$P = (A + B)$$
,  $Q = (A - B)$ ,  
 $R = \sqrt{A^2 + B^2}$ ;  
 $\cos \theta = \frac{R^2 - P^2 - Q^2}{2PQ}$   
 $= \frac{(A^2 + B^2) - (A + B)^2 - (A - B)^2}{2(A + B)(A - B)}$   
 $= -\left[\frac{A^2 + B^2}{2(A^2 - B^2)}\right]$ 

$$\theta = \cos^{-1} \left| -\frac{A^2 + B^2}{2(A^2 - B^2)} \right|$$

281 (c)

$$v = \sqrt{2gl(1 - \cos \theta)}$$
$$= \sqrt{2 \times 9.8 \times 2(1 - \cos 60^\circ)}$$
$$= 4.43 \text{ m/s}$$

282 (b)

$$\omega = 2\pi n/t = 2\pi \times 100/60 = 10.47 \text{ rad s}^{-1}$$

283 (b)

As the speed is constant throughout the circular motion therefore its average speed is equal to instantaneous speed

284 (b)

$$H = \frac{u^2 \sin^2 \theta}{2g} \text{ and } T = \frac{2u \sin \theta}{g} \Rightarrow T^2$$
$$= \frac{4u^2 \sin^2 \theta}{g^2}$$
$$\therefore \frac{T^2}{H} = \frac{8}{g} \Rightarrow T = \sqrt{\frac{8H}{g}} = 2\sqrt{\frac{2H}{g}}$$

For both cases 
$$t = \sqrt{\frac{2h}{g}} = \text{constant}$$

Because vertical downward component of velocity will be zero for both the particles

286 (a)

Centripetal acceleration =  $\frac{v^2}{r} = \frac{(10)^2}{20} = 5 \text{m/s}^2$ 

For maximum range  $\theta = 45^{\circ}$ 

$$\frac{R_{\text{max}}}{T^2} = \frac{u^2 \sin 2\theta}{g} / \frac{4u^2 \sin^2 \theta}{g^2}$$
$$\Rightarrow \frac{R_{\text{max}}}{T^2} = \frac{\sin 90^\circ \times g}{4 \times \sin^2 45^\circ} = \frac{49}{10}$$

288 (c)

Taking vertical downward motion of projectile from point of projection to ground, we have  $u = -50 \sin 30^{\circ} = -25 \text{ ms}^{-1}$  $a = +10 \text{ ms}^{-2}$ , s = 70 m, t = ? $\therefore s = ut + \frac{1}{2}at^2;$ So,  $70 = -25 \times t + \frac{1}{2} \times 10 \times t^2$ 

or 
$$5t^2 - 25t - 70 = 0$$
 or  $t^2 - 5t - 14 = 0$   
On solving  $t = 7$  s

Using 
$$v^2 - u^2 = 2as$$
, we get 
$$s = \frac{v^2}{2g}$$

Now, 
$$\frac{v^2 \sin 2\theta}{g} = \frac{v^2}{2g}$$
 or  $\sin 2\theta = \frac{1}{2}$  or  $\sin 2\theta = \sin 30^\circ$  or  $\theta = 15^\circ$ 

The other possible angle of projection is (90° -15°),



ie, 75°

## 291 (a)

In 6 turns each of 60°, the cyclist traversed a regular hexagon path having each side 100 m. So, at 7th turn, he will be again at



Starting point

Point B (as shown) which is at distance 100 m from starting point A. Hence, net displacement of cyclist is 100 m.

## 292 (a)

When speed is constant in circular motion, it means work done by centripetal force is zero

$$F = \frac{mv^2}{r}$$
 or  $v = \sqrt{\frac{Fr}{m}}$ 

Change in momentum =  $2mu \sin \theta$  $= 2 \times 0.5 \times 98 \times \sin 30 = 49 N-s$ 

At highest point  $\frac{mv^2}{R} = mg \implies v = \sqrt{gR}$ 

296 (b)

Difference in KE =  $\frac{1}{2}m\left[\left(\sqrt{5gr}\right)^2 - \sqrt{gr}\right]^2$  $= 2mgr = 2 \times 1 \times 10 \times 1 = 20$ 

298 (d)

We know that  $R = \frac{u^2 \sin 2\theta}{g}$ 

$$= \frac{10 \times 10 \times \sin 60^{\circ}}{10} = 10 \times \frac{\sqrt{3}}{2}$$
$$= 5 \times 1.732 = 8.66 \text{ m}$$

299 (c)

Velocity of particle at maximum height h is v' = $v \cos \theta$  where v = initial velocity of particle atwhich it is projected,  $\theta$  = angle of projection Angular momentum,  $L = mv'h = mv\cos\theta h$ 

$$= mvh\cos 45^\circ = \frac{mvh}{\sqrt{2}}$$

300 (b)

v = 72km/hour = 20m/sec

$$\theta = \tan^{-1}\left(\frac{v^2}{rg}\right) = \tan^{-1}\left(\frac{20 \times 20}{20 \times 20}\right) = \tan^{-1}(2)$$

301 (c)

Horizontal component of velocity of A is 10 cos 60° or 5 ms⁻¹ which is equal to the velocity of B in horizontal direction. They will collide at C if time of flight of the particles are equal or  $t_A = t_B$ 

$$\frac{2u\sin\theta}{g} = \sqrt{\frac{2h}{g}} \qquad \left( \therefore h = \frac{1}{2}gt_B^2 \right)$$
or  $h = \frac{2u^2\sin^2\theta}{g}$ 

$$= \frac{2(10)^2\left(\frac{\sqrt{3}}{2}\right)^2}{10} = 15 \text{ m}$$

Equation of trajectory for oblique projectile

$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$
Substituting  $x = D$  and  $u = v_0$ 

$$h = D \tan \theta - \frac{gD^2}{2u_0^2 \cos^2 \theta}$$

303 (d)

Given  $\theta_1 = \pi/3 = 30^\circ$ 

Horizontal range is same if  $\theta_1 + \theta_2 = 90^{\circ}$ 

Horizontal range is same if 
$$\theta_1 + \theta_2 = 90^\circ$$
  

$$\therefore \quad \theta_2 = 90^\circ - 30^\circ = 60^\circ$$

$$y_1 = \frac{u^2 \sin^2 30^\circ}{2g} \text{ and } y_2 \frac{u^2 \sin^2 60^\circ}{2g}$$

$$\therefore \frac{y_2}{y_1} = \frac{\sin^2 30^\circ}{\sin^2 60^\circ} = \left(\frac{1/4}{\sqrt{3}/4}\right)^2 = \frac{1}{2} \text{ or } y_2 = \frac{y_1}{3}$$

#### 304 (d)

Since range is given to be the same therefore the other angle is  $(90^{\circ} - 30^{\circ})$ , ie,  $60^{\circ}$ 

$$H = \frac{v^2 \sin^2 30^\circ}{2g} = \frac{1}{4} \left[ \frac{v^2}{2g} \right]$$

$$H' = \frac{v^2 \sin^2 60^\circ}{2g} = \frac{3}{4} \left[ \frac{v^2}{2g} \right]$$

$$\frac{H'}{H} = \frac{3}{4} \times \frac{4}{1} = 3 \text{ or } H' = 3H$$

## 305 (d)

From force diagram shown in figure

$$T_1 \cos 30^\circ + T_2 \cos 45^\circ = mg$$
 ...(i)  
 $T_1 \sin 30^\circ + T_2 \sin 45^\circ = \frac{mv^2}{r}$  ...(ii)

After solving Eq. (i) and eq. (ii), we get

$$T_1 = \frac{mg - \frac{mv^2}{r}}{\left(\frac{\sqrt{3} - 1}{2}\right)}$$

$$\operatorname{But} T_1 > 0$$

$$\therefore \frac{mg - \frac{mv^2}{r}}{\frac{\sqrt{3} - 1}{2}} > 0$$

CLICK HERE ( >>







or 
$$mg > \frac{mv^2}{r}$$
  
or  $v < \sqrt{rg}$ 

$$v_{\text{max}} = \sqrt{rg} = \sqrt{1.6 \times 9.8} = 3.96 \text{ ms}^{-1}$$

306 (a)

Given 
$$(\hat{i} + 2\hat{j} - \hat{k}) + (\hat{i} - \hat{j} + 2\hat{k}) + \vec{C} = \hat{j}$$
  
 $\vec{C} = \hat{j} - (\hat{i} - 2\hat{j} - \hat{k}) - (\hat{i} + \hat{j} + 2\hat{k})$   
 $= -2\hat{i} - \hat{k}$ .

307 (b)

For a particle moving in a circle with constant angular speed, velocity vector is always tangent to the circle and the acceleration vector always points towards the center of circle or is always along radius of the circle. Since, tangential vector is perpendicular to the acceleration vector. But in no case acceleration vector is tangent to the circle.

308 (a)

$$\frac{u^2 \sin 2\theta}{g} = 4\sqrt{3} \times \frac{u^2 \sin \theta}{2g}$$
or 
$$\frac{u^2}{g} 2 \sin \theta \cos \theta = 2\sqrt{3} \frac{u^2}{g} \sin^2 \theta$$

The time taken by the particle for one complete revolution.

$$t = \frac{2\pi r}{\text{speed}}$$
$$= \frac{2 \times 3.14 \times 100}{31.4} = 20s$$

Hence, averge speed is

$$v_{\rm av} = \frac{2 \times 3.14 \times 100}{20} = 31.4 \text{ ms}^{-1}$$



310 (a)

$$F = \frac{mv^2}{r} \Rightarrow v = \sqrt{\frac{rF}{m}}$$

311 (d)

At the two point of the trajectory during projectile motion, the horizontal component of the velocity is same. Then,

$$u\cos 60^{\circ} = v\cos 45^{\circ}$$

147 × 
$$\frac{1}{2} = v \times \frac{1}{\sqrt{2}}$$
 or  $v = \frac{147}{\sqrt{2}} \frac{m}{s}$   
Initially,  $u_y = u \sin 60^\circ = \frac{147\sqrt{3}}{2} \text{ m/s}$   
Finally,  $v_y = v \sin 45^\circ = \frac{147}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{147}{\sqrt{2}} \text{m/s}$ 

But  $v_y = u_y + a_y t$  or  $\frac{147}{2} = \frac{147\sqrt{3}}{2} - 9.8 t$  $9.8 t = \frac{147}{2} (\sqrt{3} - 1) \text{ or } t = 5.49 s$ 

312 (c)

$$v_x = \frac{dx}{dt} = \frac{d}{dt}(3t^2 - 6t) = 6t - 6. \text{ At } t = 1, v_x = 0$$

$$v_y = \frac{dy}{dt} = \frac{d}{dt}(t^2 - 2t) = 2t - 2. \text{ At } t = 1, v_y = 0$$
Hence  $v = \sqrt{v_x^2 + v_y^2} = 0$ 

313 (a)

The maximum velocity for a banked road with

$$v^{2} = gr\left(\frac{\mu + \tan \theta}{1 - \mu \tan \theta}\right)$$

$$\Rightarrow v^{2} = 9.8 \times 1000 \times \left(\frac{0.5 + 1}{1 - 0.5 \times 1}\right) \Rightarrow v$$

$$= 172m/s$$

314 (a)

For horizontal planes potential energy remains constant equal to zero, if we assumes surface to be the zero level.

315 (c)

Change in momentum of the ball =  $mv \sin \theta$  –

$$=2mv\sin\theta=2mgv\frac{\sin\theta}{g}=mg\times\frac{2v\sin\theta}{g}$$

= weight of the ball × total time of flight

316 (b)

If the both mass are revolving about the axis yy' and tension in both the threads are equal then



 $M\omega^2 x = m\omega^2 (l - x)$  $\Rightarrow Mx = m(l - x)$ 

$$\Rightarrow x = \frac{ml}{M+m}$$

In 15 second's hand rotate through 90°



Change in velocity  $|\overrightarrow{\Delta v}| = 2v \sin(\theta/2)$ 



$$=\frac{4\pi}{60\sqrt{2}} = \frac{\pi\sqrt{2}}{30} \frac{cm}{\text{sec}}$$
 [As  $T = 60 \text{ sec}$ ]

318 (b)

$$F = mr\omega^2 = mr(2\pi v)^2 \text{ ie, } F \propto v^2$$

$$\frac{2F}{F} = \left(\frac{v'}{v}\right)^2 \text{ or } v' = v\sqrt{2} = 5\sqrt{2} = 7\text{rpm}$$

319 (b)

Since  $\vec{F} = 4\hat{\imath} - 3\hat{\jmath}$  is lying in X - Y plane, hence the vector perpendicular to  $\vec{F}$  must be lying perpendicular to X - Y plane ie, along Z-axis.

$$\mu = \frac{v^2}{rg} = \frac{(60 \times 5/18)^2}{40 \times 9.8} = 0.71$$

 $F = m\omega^2 R : R \propto \frac{1}{\omega^2} (m \text{ and } F \text{ are constant})$ 

If  $\omega$  is doubled then radius will become 1/4 times i.e. R/4

322 (b)

Because here tension is maximum

323 (d)

$$T\sin\theta = M\omega^2 R \qquad ...(i)$$

$$T \sin \theta = M\omega^2 L \sin \theta$$
 ...(ii)

 $T = M\omega^2 L$ 

$$= M \cdot 4\pi^2 n^2 L$$

$$= M \cdot 4\pi^2 \left(\frac{2}{\pi}\right)^2 L$$

= 16 ML

324 (c)

$$h = v \sin \theta \, t - \frac{1}{2} g t^2$$
or  $\frac{1}{2} g t^2 - v \sin \theta \, t + h = 0$ 

$$t_1 + t_2 = -\frac{-v \sin \theta}{\frac{1}{2} g} \text{ or } t_1 + t_2 = \frac{2v \sin \theta}{g} = T$$

or T = (1+3)s = 4s

325 (c)

$$V_{\text{max}} = \sqrt{\mu r g} = \sqrt{0.75 \times 60 \times 9.8} = 21 \text{m/s}$$

326 (a)

There is no change in the angular velocity, when speed is constant

327 (a)

By doing so component of weight of vehicle provides centripetal force

328 (c)

Let t be time taken by the bullet to hit the target  $\therefore 200 m = 2000 ms^{-1}t$ 

$$\Rightarrow t = \frac{200m}{2000ms^{-1}} = \frac{1}{10}s$$

For vertical motion

Here u = 0

$$\therefore h = \frac{1}{2}gt^2$$

$$h = \frac{1}{2} \times 10 \times \left(\frac{1}{10}\right)^2 = \frac{1}{20}m = 5 cm$$

∴ Gun should be aimed 5 cm above the target

329 (b)

Component of velocity perpendicular to plane remains the same (in opposite direction) ie,  $u \sin \theta = 20 \sin 30^{\circ} = 10 \text{ ms}^{-1}$ 

330 (c)

Total time of flight =  $\frac{2u\sin\theta}{g} = \frac{2\times50\times1}{2\times10} = 5s$ 

Time to cross the wall = 3 sec (Given)

Time in air after crossing the wall = (5-3) = 2 sec

 $\therefore$  Distance travelled beyond the wall =  $(u \cos \theta)t$ 

$$=50 \times \frac{\sqrt{3}}{2} \times 2 = 86.6 m$$

331 (a)

When a body moves on a circular path then force and distance are perpendicular to each other.

Therefore, work done by the force is

$$W = F \cdot d \cos \theta$$

$$= F \cdot d\cos 90^{\circ} \qquad (\because \theta = 90^{\circ})$$

$$= 0$$
 (:  $\cos 90^{\circ} = 0$ )

333 (a)

$$T = m\omega^2 r \implies \omega \propto \sqrt{T} :: \frac{\omega_2}{\omega_1} = \sqrt{\frac{1}{4}} \implies \omega_2 = \frac{\omega_1}{2}$$

$$= 5 rpm$$

334 (c)

Because vertical downward displacement of both (target and bullet) will be equal

335 (c)

At time  $t_1$  the velocity of ball will be maximum and it goes on decreasing with respect to time At the highest point of path its velocity becomes zero, then it increases but direction is reversed





This explanation matches with graph (c)

$$\alpha = \frac{d\omega}{dt} = 0$$
 [As  $\omega = \text{constant}$ ]

For a particle in uniform circular motion



$$\mathbf{a} = \frac{v^2}{R} = \text{towards center of circle}$$
$$\mathbf{a} = \frac{v^2}{R} \left( -\cos\theta \,\hat{\mathbf{i}} - \sin\theta \,\hat{\mathbf{j}} \right)$$

or 
$$\mathbf{a} = \frac{v^2}{R} \cos \theta \,\hat{\mathbf{i}} - \frac{v^2}{R} \sin \theta \,\hat{\mathbf{j}}$$

$$R = \frac{u^2 \sin 2\theta}{g}$$
, At  $\theta = 45^\circ$ ,  $R = \max$ .

$$\therefore R_{\max} = \frac{u^2}{q}$$

339 (a)

If the horizontal range is the same then the angle of projection of an object is  $\theta$  or  $(90^{\circ} - \theta)$  with the horizontal direction. So, the angle of projection of first particle is  $\theta$  and the other particle is  $(90^{\circ} - \theta)$ 

$$t_{1} = \frac{2u\sin\theta}{g}$$

$$t_{2} = \frac{2u\sin\theta(90^{\circ} - \theta)}{g}$$

$$t_{2} = \frac{2u\cos\theta}{g}$$

$$\therefore t_{1}t_{2} = \frac{2u\sin\theta}{g} \cdot \frac{2u\cos\theta}{g}$$

$$t_{1}t_{2} = \frac{2u^{2}\sin2\theta}{g^{2}}$$
or 
$$t_{1}t_{2} = \frac{2R}{g} \quad \left(\because R = \frac{u^{2}\sin2\theta}{g}\right)$$

340 (c)

In uniform circular motion, acceleration causes due to change in direction and is directed radially towards centre

341 (a)

Here, 
$$\alpha = 2\theta$$
,  $\beta = \theta$ 



Time of flight of *A* is, 
$$T_1 = \frac{2u\sin(\alpha-\beta)}{g\cos\beta}$$
  
 $2u\sin(2\theta-\theta)$   $2u$ 

$$= \frac{2u\sin(2\theta - \theta)}{g\cos\theta} = \frac{2u}{g}\tan\theta$$

Time of flight of B is, 
$$T_2 = \frac{2u\sin\theta}{g\cos\theta} = \frac{2u}{g}\tan\theta$$

So,  $T_1 = T_2$ . The acceleration of both the particles is g downwards. Therefore, relative acceleration between the two is zero or relative motion between the two is uniform. The relative velocity of A w.r.t. B is towards AB, therefore collision will take place between the two in mid air.

342 (a)



To reach the unshaded portion particle P needs to travel horizontal range greater than R sin 45° or (0.7 R) but its range is less than  $\frac{R}{3}$ . So it will fall on shaded portion

Q is near to origin, its velocity will be nearly along QR so its will fall in unshaded portion

343 (b)

Since the projectile is released its initial velocity is the same as the velocity of the plane at the time of release

Take the origin at the point of release Let x and y = -730m) be the coordinates of the point on the ground where the projectile hits and let t be the time when it hits. Then

$$y = -v_0 t \cos \theta - \frac{1}{2} g t^2$$

where  $\theta = 53.0^{\circ}$ 

This equation gives

$$v_0 = -\frac{y + \frac{1}{2}gt^2}{t\cos\theta}$$
$$= -\frac{-730 + \frac{1}{2}(9.8)(5)^2}{5\cos 53^\circ} = 202 \text{ ms}^{-1}$$

344 (b)

Only horizontal component of velocity ( $u \cos \theta$ )

345 (a)





Water will not fall down, if weight, mg = centrifugal force

$$= mr\omega^2 = mr\left(\frac{2\pi}{T}\right)^2$$

$$(0.5)^2 + (0.8)^2 + c^2 = 1$$

$$0.25+0.64+c^2=1$$

or 
$$c^2 = 1 - 0.25 - 0.64 = 0.11$$

or 
$$c = \sqrt{0.11}$$

# 347 (c)

$$\mu = \frac{v^2}{rg} = \frac{(4.9)^2}{4 \times 9.8} = 0.61$$

#### 348 (b)

If 
$$|\vec{A}| = |\vec{B}| = x$$
, then  $|\vec{C}| = \sqrt{2}x$ 

Now, 
$$\vec{A} + \vec{B} = -\vec{C}$$

or 
$$(\vec{A} + \vec{B}) \cdot (\vec{A} + \vec{B}) = (-\vec{C}) \cdot (-\vec{C})$$

or 
$$\cos\theta = 0$$
 or  $\theta = 90^{\circ}$ 

or 
$$\vec{A} \cdot \vec{A} + \vec{C} \cdot \vec{C} + 2\vec{A} \cdot \vec{C} = B^2$$

or 
$$x^2 + 2x^2 + 2x^2\sqrt{2}\cos\theta = x^2$$

or 
$$\cos\theta = -\frac{1}{\sqrt{2}}$$

$$\therefore$$
 or  $\theta = 135^{\circ}$ 

Again, 
$$\vec{B} + \vec{C} = -\vec{A}$$

or 
$$(\vec{B} + \vec{C}) \cdot (\vec{B} + \vec{C}) = -(-\vec{A}) \cdot (-\vec{A})$$

or 
$$x^2 + 2x^2 + 2x^2\sqrt{2}\cos\theta = x^2$$

or 
$$\cos\theta = -\frac{2x^2}{2x^2\sqrt{2}\cos\theta} = -\frac{1}{2}$$
 or  $\theta = 135^\circ$ 

#### 349 (d)

Tension in the string  $T = m\omega^2 r = 4\pi^2 n^2 mr$ 

$$\therefore T \propto n^2 \Rightarrow \frac{n_2}{n_1} = \sqrt{\frac{T_2}{T_1}} \Rightarrow n_2 = 5\sqrt{\frac{2T}{T}} = 7 \ rpm$$

#### 350 (b)

For same range angle of projection should be  $\theta$  and  $90 - \theta$ 

So, time of flights 
$$t_1 = \frac{2u\sin\theta}{g}$$
 and

$$t_2 = \frac{2u\sin(90 - \theta)}{g} = \frac{2u\cos\theta}{g}$$

By multiplying =  $t_1 t_2 = \frac{4u^2 \sin \theta \cos \theta}{a^2}$ 

$$t_1 t_2 = \frac{2}{g} \frac{(u^2 \sin 2\theta)}{g} = \frac{2R}{g} \Rightarrow t_1 t_2 \propto R$$

#### 351 (d)

Radial force 
$$=\frac{mv^2}{r} = \frac{m}{r} \left(\frac{p}{m}\right)^2 = \frac{p^2}{mr} [As \ p = mv]$$

## 352 (d)

The velocity at B is v, where  $v^2 = u^2 - 2g L$ , in vertically upward direction. As is clear from figure change in velocity



$$\overrightarrow{\mathbf{OB}}' = \overrightarrow{\mathbf{OA}} = \overrightarrow{\mathbf{A}'\mathbf{B}'}$$

$$=\sqrt{u^2+v^2}=\sqrt{u^2+(u^2-2gL)}=\sqrt{2(u^2-gL)}$$

## 353 (a)

Time period of earth on its own axis

$$T = 24 \, \text{h}$$

$$= 24 \times 60 \times 60 \text{ s}$$

$$\therefore \text{ Angular velocity } \omega = \frac{2\pi}{T}$$

$$= \frac{2\pi}{24 \times 60 \times 60}$$
$$= \frac{2\pi}{86400} \text{ rads}^{-1}$$

# 354 (a)

When body is released from the position p (inclined at angle  $\theta$  from vertical) then velocity at mean position

$$v = \sqrt{2gl(1 - \cos\theta)}$$

$$\therefore$$
 Tension at the lowest point =  $mg + \frac{mv^2}{l}$ 

$$= mg + \frac{m}{l} [2gl(1 - \cos 60)] = mg + mg = 2mg$$

### 355 (c)

$$: W = FS \cos \theta :: \theta = 90^{\circ}$$

## 356 **(b)**

Let  $\alpha'$  be the angle of projection of the second body



$$R = \frac{u^2}{g\cos^2\beta} [\sin(2\alpha - \beta) - \sin\beta]$$

Range of both the body is same. Therefore

$$\sin(2\alpha - \beta) = \sin(2\alpha' - \beta)$$

or 
$$2\alpha' - \beta = \pi - (2\alpha - \beta)$$

$$\alpha' = \frac{\pi}{2} - (\alpha - \beta)$$

Now, 
$$T = \frac{2u\sin(\alpha - \beta)}{g\cos\beta}$$
 and  $T' = \frac{2u\sin(\alpha' - \beta)}{g\cos\beta}$ 

$$\therefore \frac{T}{T'} = \frac{\sin(\alpha - \beta)}{\sin(\alpha' - \beta)} = \frac{\sin(\alpha - \beta)}{\sin\left\{\frac{\pi}{2} - (\alpha - \beta) - \beta\right\}}$$



$$\frac{\sin(\alpha - \beta)}{\sin\left(\frac{\pi}{2} - \alpha\right)} = \frac{\sin(\alpha - \beta)}{\cos\alpha}$$

$$\vec{B} + (\hat{i} + 2\hat{j} - 3\hat{k}) = \hat{i}$$

or 
$$\vec{B} = -2\hat{j} + 3\hat{k}$$

358 (d)

$$\begin{aligned} \cos\theta &= \frac{(\hat{\imath} + 2\hat{\jmath} + 2\hat{k}).\hat{\imath}}{(1^2 + 2^2 + 2^2)^{1/2}} = \frac{1}{\sqrt{3}} = \frac{1}{3} \\ &= 0.4472 = \cos 63^{\circ} 12' \end{aligned}$$

359 (a)

Centripetal velocity at highest point = 
$$\sqrt{gR}$$
 =  $\sqrt{10 \times 1.6}$  =  $4m/s$ 

360 (a)

Centripetal acceleration

$$a = \frac{v}{t}$$

Angular acceleration 
$$\propto = \frac{\omega}{t} = \frac{\omega v}{vt}$$

$$\therefore \propto = \frac{\omega a}{v}$$

361 (c)

The velocity of the particle at any time t

$$\vec{\mathbf{v}} = \vec{\mathbf{v}}0 + \vec{\mathbf{a}}t$$

The x-component is

$$v_x = v_{ax} + a_x t$$

The y-component is

$$v_y = v_{ay} + a_x = (-0.5t) \text{ms}^{-1}$$

When the particle reaches its maximum xcoordinates,  $v_x = 0$ . That is

$$3 - t = 0$$

$$\Rightarrow t = 3s$$

The *y*-component of the velocity of this time is  $v_{\rm y}=-0.5\times 3=-1.5~{\rm ms^{-1}}$ 

362 (b)

$$\vec{A} = 2\hat{i} - \hat{j} + 3\hat{k}; \vec{B} = 3\hat{i} - 2\hat{j} - 2\hat{k}; \vec{C} = ?$$
 $\vec{R} = \hat{k} = \vec{A} + \vec{B} + \vec{C}$ 
 $\hat{k} = (2\hat{i} - \hat{j} + 3\hat{k}) + (3\hat{i} - 2\hat{j} - 2\hat{k}) + \vec{C}$ 

$$=5\hat{\imath}-3\hat{\jmath}+\hat{k}+\vec{C}$$

$$\vec{C} = -5\hat{i} + 3\hat{j}$$

363 (a)

Tangential acceleration  $a = L\alpha$ 

- $\therefore$  Normal relation  $N = Ma = ML\alpha$
- $\therefore$  Frictional force  $F = mN = \mu ML\alpha$

For no sliding along the length frictional force  $\geq$  centripetal force

ie, 
$$\mu M L \alpha \geq M L \omega^2$$

As 
$$\omega = \omega_0 + \alpha t = \alpha t$$

$$\therefore \mu ML\alpha \ge ML(\alpha t)^2 \Rightarrow t = \sqrt{\frac{\mu}{\alpha}}$$

364 (b)

$$\frac{mv^2}{r} \propto \frac{K}{r} \Rightarrow v \propto r^o$$

i.e. speed of the particle is independent of r

365 (b)

$$E'_{k} = E_{k} \cos^{2} 30^{\circ} = \frac{3E_{k}}{4}$$

366 (a)

$$v' = v_0 \cos \theta$$

$$\frac{v_0}{2} = v_0 \cos \theta$$

$$\cos \theta = \frac{1}{2}$$

$$\theta = 60^{\circ}$$

367 (c)

All the balls are projected from the same height, therefore their velocities will be equal.

So, 
$$v_1 = v_2 = v_3$$

368 (d)

Maximum tension in the string is

$$T_{\max} = mg + \frac{mv_B^2}{l}$$



$$= mg + \frac{2mgl}{l}(1 - \cos\theta_0)$$

$$= mg + \frac{2mgl}{l} \cdot 2\sin^2\frac{\theta_0}{2}$$

$$\because \left(1 - \cos \theta_0 = 2\sin^2 \frac{\theta_0}{2}\right)$$

[Since  $\theta_0$  is small]

$$= mg(1 + \theta_0^2)$$

369 (b)

$$R^2 = P^2 + P^2 + 2P^2 \cos\theta$$
 or  $R^2 = 2P^2 +$ 

 $2P^2\cos\theta$ 

or 
$$R^2 = 2P^2(1 + \cos\theta)$$

or 
$$R^2 = 2P^2 \left(1 + 2\cos^2\frac{\theta}{2} - 1\right)$$

or 
$$R^2 = 4P^2 \cos^2 \frac{\theta}{2}$$

or 
$$R = 2P \cos \frac{\theta}{2}$$

Horizontal component of velocity  $v_x = 500 \ m/s$ 

and vertical components of velocity while striking the ground







 $v_v = 0 + 10 \times 10 = 100 \, m/s$ 

: Angle with which it strikes the ground

$$\theta = \tan^{-1}\left(\frac{v_y}{v_x}\right) = \tan^{-1}\left(\frac{100}{500}\right) = \tan^{-1}\left(\frac{1}{5}\right)$$

Here, Mass of a stone, m = 2kg

Length of a string, r = 0.5 m

Breaking tension, T = 900 N

As 
$$T = mr\omega^2$$
 or  $\omega^2 = \frac{T}{mr} = \frac{900}{2 \times 0.5} = 900$   
 $\omega = 30 \text{ rad } s^{-1}$ 

372 (b)

$$T_{\text{top}} = \frac{mv^2}{r} - mg = 2mg$$
$$\frac{T_{\text{top}}}{T_{\text{bottom}}} = \frac{2mg}{2mg + 6mg} = \frac{1}{4}$$

373 (a)

$$AB \cos \theta = AB \text{ or } \cos \theta = 1 \text{ or } \theta = 0^{\circ}$$

$$v_{\text{max}} = \sqrt{\mu rg} = \sqrt{0.5 \times 40 \times 9.8} = 14 \text{ m/s}$$

375 (c)

For projectile A

Maximum height,  $H_A = \frac{u_A^2 \sin^2 45^\circ}{2a}$ 

For projectile B

Maximum height  $H_B = \frac{u_B^2 \sin^2 \theta}{2a}$ 

As per equation

$$H_A = H_B$$

$$\frac{u_A^2 \sin^2 45^\circ}{2g} = \frac{u_B^2 \sin^2 \theta}{2g}$$

$$\Rightarrow \frac{\sin^2 \theta}{\sin^2 45^\circ} = \frac{u_A^2}{u_B^2}$$

$$\Rightarrow \sin^2 \theta = \left(\frac{u_A}{u_B}\right)^2 \sin^2 45^\circ$$

$$\Rightarrow \sin^2 \theta = \left(\frac{1}{\sqrt{2}}\right)^2 \left(\frac{1}{\sqrt{2}}\right)^2 \ \left[\because \frac{u_A}{u_B} = \frac{1}{\sqrt{2}} \ (\text{Given})\right]$$

$$\Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta \sin^{-1} \left(\frac{1}{2}\right) = 30^{\circ}$$

376 (a)

Extension is first case

$$\Delta l_1 = 2a - a = a$$

From Hooke's law

$$F = k\Delta l_1$$

$$mr\omega^2 = ka$$

$$m(2a)\omega^2 = ka$$

$$2ma\left(\frac{2\pi}{T}\right)^2 = ka$$

$$m(3a)\left(\frac{2\pi}{T'}\right)^2 = k(3a - 2a)$$

On dividing Eq. (ii) by Eq. (i)

$$T' = \sqrt{\frac{3}{2}}T$$

377 (c)

Centripetal acceleration =  $4\pi^2 n^2 r = 4\pi^2 \left(\frac{1}{2}\right)^2 \times$ 

$$4 = 4\pi^2$$

378 (b)

$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \vec{F}_4$$

$$= (5\hat{i} - 5\hat{j} + 5\hat{k}) + (2\hat{i} + 8\hat{j} + 6\hat{k})$$

$$+ (-6\hat{i} + 4\hat{j} - 7\hat{k}) + (-\hat{i} - 3\hat{j} - 2\hat{k})$$

$$= 4\hat{i} + 2\hat{k}$$

This fore is in y - z plane. Therefore, particle will move in y - z plane.

379 (c)

Let v be the velocity at the time of collision



Then,  $u\sqrt{2}\cos 45^\circ = v\sin 60^\circ$ 

$$(u\sqrt{2})\left(\frac{1}{\sqrt{2}}\right) = \frac{\sqrt{3}v}{2} \quad \therefore \quad v = \frac{2}{\sqrt{3}}u$$

381 (a)

Given,  $r = (20/\pi)$ m

$$v = 80 \text{ m/s}$$

$$\theta = 2 \text{ rev} = 4\pi \text{ rad}$$

$$\omega_0 = 0$$

From the equation

$$\omega^2 = \omega_0^2 + 2\alpha\theta$$
, we have

$$\omega^2 = 2\alpha \theta$$

or 
$$\frac{v^2}{r^2} = 2 \cdot \frac{a}{r} \theta$$

or 
$$a = \frac{v^2}{2r\theta} = \frac{(80)^2}{2 \times (20/\pi) \times 4\pi}$$

382 (b)

$$R = \frac{u^2 \sin 2\theta}{g} = \frac{(500)^2 \times \sin 30^\circ}{10} = 12.5 \times 10^3 \, m$$

383 (d)

Angular velocity of second's hand

$$=\frac{2\pi}{60}=\frac{\pi}{30}=\frac{3.14}{30}$$

$$= 0.1047 \text{ rad s}^{-1}$$



Linear velocity,  $v = r\omega$ =  $3 \times 10^{-2} \times 0.1047 = 0.00314 \text{ ms}^{-1}$ 

385 (d)

Here, 
$$r = 5 \text{ m}, \mu = 0.5, \omega = ?, g = 10 \text{ms}^{-2}$$
  $mr\omega^2 = F = \mu R = \mu mg$   $\omega = \sqrt{\frac{\mu g}{r}} = \sqrt{\frac{0.5 \times 10}{5}} = 1 \text{ rad s}^{-1}$ 

386 (d)

Kinetic energy given to a sphere at lowest point = potential energy at the height of suspension



$$\Rightarrow \frac{1}{2}mv^2 = mgl$$
$$\therefore v = \sqrt{2gl}$$

387 (b)

Centripetal force =  $mr\omega^2 = 5 \times 1 \times 4 = 20N$ 

388 **(b)** 

$$T = \frac{2u\sin\theta}{g} = \frac{2 \times 9.8 \times \sin 30}{9.8} = 1 \text{ s}$$

389 (c)

A particle performing a uniform circular motion has a transverse velocity and radial acceleration

390 (d)

In equilibrium position along y-direction

$$2\sin 60^\circ = \sqrt{3} + F\cos\theta$$

or 
$$2 \times \frac{\sqrt{3}}{2} = \sqrt{3} + F \cos \theta$$
 or  $F \cos \theta = 0$ 

As  $F \neq 0$ 

$$\therefore \cos \theta = 0 \text{ or } \theta = 90^{\circ}$$

Along *x*-direction,  $F \sin 90^{\circ} = 1 + 2\cos 60^{\circ}$ 

$$= 1 + 2 \times \frac{1}{2}$$
$$F = 2N$$

391 (b)

$$\tan \theta = \frac{v^2}{rg} \text{ or } \theta = \tan^{-1} \left(\frac{v^2}{rg}\right)$$

392 (a)

$$\frac{mv^2}{r} = \frac{k}{r^2} \Rightarrow mv^2 = \frac{k}{r} \therefore \text{K. E.} = \frac{1}{2} mv^2 = \frac{k}{2r}$$

$$P.E. = \int F dr = \int \frac{k}{r^2} dr = -\frac{k}{r}$$

 $\therefore \text{ Total energy} = \text{ K. E.} + \text{P. E.} = \frac{k}{2r} - \frac{k}{r} = -\frac{k}{2r}$ 

393 (a)

When the angle of projection is very far from 45° then range will be minimum

394 (c)

Difference in K.E. = Difference in P.E. = 2mgr

$$v = \sqrt{\mu \, rg} = \sqrt{0.64 \times 20 \times 10} = 11.2 \, \text{ms}^{-1}$$

396 **(b)** 

Tangential acceleration, 
$$a_t = \frac{v_f - v_i}{t}$$

$$= \left(\frac{45 - 60}{8}\right) \frac{22}{15} \text{ fts}^{-1}$$

$$= -\frac{11}{4} \text{ fts}^{-2}$$

Radial acceleration, 
$$a_r = \frac{v^2}{r} = \frac{\left(60 \times \frac{22}{15}\right)^2}{2500}$$
  
= 3.1 fts⁻²

Then, 
$$a = \sqrt{a_r^2 + a_t^2} = 4.14 \text{ fts}^{-2}$$

397 (d)

$$\vec{A} \cdot (\vec{B} \times \vec{A}) = (\vec{A} \times \vec{A}) \cdot \vec{B} = (\vec{0}) \cdot \vec{B} = 0$$

398 (c)

The range of particle is

$$R = \frac{u^2 \sin 2\theta}{g}$$

$$R = \frac{u^2 \sin 2 \times 45^{\circ}}{g} \ (\because \theta = 45^{\circ})$$
or 
$$R = \frac{u^2 \sin 90^{\circ}}{g}$$
or 
$$R = \frac{u^2}{g} \dots (i)$$



Now, the maximum height of the particle is

$$H = \frac{u^2 \sin^2 \theta}{2g}$$

$$= \frac{u^2 \sin^2 45^\circ}{2g} = \frac{u^2 \left(\frac{1}{\sqrt{2}}\right)^2}{2g}$$

$$= \frac{u^2}{4g} \dots (ii)$$

Dividing Eqs. (i) by Eq. (ii),

$$\frac{R}{H} = \frac{u^2/g}{u^2/4g}$$
or  $R = 4H$ 

399 **(c)**

$$T = \text{tension}, W = \text{weight and } F$$
 $= \text{centrifugal force}$ 





$$r_1 = v/\omega$$
;  $r_2 = 2v/(\omega/2) = 4v/\omega = 4r_1$   
 $a_1 = v^2/r_1$ ;  $a_2 = (2v)^2/r_2 = 4v^2/r_1 = v^2/r_1 = a_1$ 

$$|\vec{a} \times \vec{b}| = ab \sin\theta$$

 $sin\theta$  cannot be greater than 1.

 $|\vec{a} \times \vec{b}|$  cannot be greater than ab.

Angular acceleration =  $\frac{d^2\theta}{dt^2}$  =  $2\theta_2$ 

## 403 (b)

To keep the mass *M* steady, let *T* is the tension in the string joining the two. Then for particle m,

$$T = \frac{mv^2}{R} \dots (i)$$

For mass M,

$$T = Mg \dots (ii)$$

From Eqs. (i) and (ii)

$$\frac{mv^2}{R} = Mg \Longrightarrow v = \sqrt{\frac{MgR}{m}}$$



#### 404 (b)

Since range is max, therefore  $\theta=45^\circ$ 

Hence, 
$$V_x = V \cos \theta = V \cos 45^\circ = \frac{V}{\sqrt{2}}$$

At the highest point, the net velocity of the projectile is

$$V_x = V \cos 45^\circ$$

$$\therefore \text{ K. E.} = \frac{1}{2}mV_x^2 = \frac{1}{2}m\frac{V^2}{2} = 0.5 \text{ K}$$

Acceleration of electron

$$= \frac{v^2}{r} = \frac{(2.18 \times 10^6)^2}{0.528 \times 10^{-10}} = 9 \times 10^{22} \text{ ms}^{-2}$$

# 406 (d)

Given, equation is

$$y = 9x^2$$
 .... (i)

Since, x-component of velocity remains constant,

$$\frac{dx}{dt} = \frac{1}{3} \text{ms}^{-1}$$
 ... (ii)

From Eq. (i), we have y-component of velocity.

$$\frac{dy}{dt} = 18x \cdot \left(\frac{dx}{dt}\right)^2$$

$$\frac{dy}{dt} = 18\left(\frac{dx}{dt}\right)^2 = 18 \times \left(\frac{1}{3}\right)^2 = 2\text{ms}^{-2}$$

$$\therefore \mathbf{a}_{v} = 2\hat{\mathbf{j}} \text{ ms}^{-2}$$

### 407 (a)

Because velocity is always tangential and centripetal acceleration is radial.

### 408 (b)

Let a body be projected at a velocity u at an angle  $\theta$  with the horizontal. Then horizontal range covered is given by



$$R = \frac{u^2 \sin 2\theta}{q} \dots (i)$$

$$H = \frac{u^2 \sin^2 \theta}{2g} \dots (ii)$$

Given, 
$$R = 3H$$

$$\frac{u^2 \sin 2\theta}{g} = 3 \times \frac{u^2 \sin^2 \theta}{2g}$$

$$\therefore \frac{u^2 2 \sin \theta \cos \theta}{g} = 3 \times \frac{u^2 \sin^2 \theta}{2g}$$

or  $2\cos\theta = 1.5\sin\theta$ 

$$or \tan \theta = \frac{2}{1.5} = 1.33$$

or 
$$\theta = 53^{\circ}7''$$

Hence, angle of projection is 53°7'

## 409 (d)

When the string makes an angle  $\theta$  with the vertical, then

$$T - mg\cos\theta = \frac{mv^2}{r}$$

Substituting the values, we obtain

$$6 - (1)(10)\cos\theta = \frac{1 \times (4)^2}{1}$$

or 
$$6 - 10 \cos \theta = 16$$

or 
$$\cos \theta = -1 = \cos 180^{\circ}$$

∴ = 180°

#### 410 (b)

Range, 
$$R = \frac{u^2 \sin 2\theta}{a}$$

$$\therefore 20 = \frac{u^2 \sin(2 \times 30^\circ)}{g}$$

$$\Rightarrow \frac{u^2}{g} = \frac{20}{\sin 60^\circ} = \frac{20}{\sqrt{3}} \times 2 = \frac{40}{\sqrt{3}}$$

$$Now, H = \frac{u^2 \sin^2 \theta}{2g}$$

$$= \frac{40}{\sqrt{3}} \times \frac{\sin^2 30^\circ}{2}$$

$$= \frac{40}{\sqrt{3}} \times \frac{\left(\frac{1}{2}\right)^2}{2} = \frac{5}{\sqrt{3}} \text{m}$$

412 **(b)** 



At 
$$B, u = 10 \text{ m/s}$$
  
at max. height,  $v = 0$   
 $a = -10 \text{ m/s}^2$ ;  $s = h/2$   
From equation (i)  
 $0 = (10)^2 + 2(-10)h/2 \Rightarrow h = 10 \text{ m}$ 

413 (c)

When two bullets are fired simultaneously, horizontally with different speeds, then they cover different horizontal distance because there is no acceleration in this direction.

Since, horizontal distance (R) = velocity  $\times$  time. But there is a vertical acceleration towards the earth (g), so the vertical distance covered by both bullet are

given by

 $y = \frac{1}{2}gt^2$ , which is independent of initial velocity.

So, both the bullets will hit the ground simultaneously .

414 (b)

$$H = \frac{u^2 \sin^2 \theta}{2g}$$

$$dH = \frac{2u \sin^2 \theta}{2g} du$$

$$\therefore \frac{dH}{H} = \frac{2du}{u} = 2 \times \frac{1}{10}$$

$$\therefore \% \text{ increase in } H = \frac{dH}{H} \times 100$$

$$= \frac{2}{10} \times 100 = 20\%$$

415 (d)

For vertically upward motion of a projectile,

$$y = (u \sin \alpha)t - \frac{1}{2}gt^2$$
or  $h = (u \sin \alpha)t - \frac{1}{2}gt^2$ 
or  $gt^2 - (2u \sin \alpha)t + 2h = 0$ 

$$\therefore t = \frac{2u \sin \alpha \pm \sqrt{(4u^2 \sin^2 \alpha) - 8gh}}{2g}$$

If two roots of quadratic Eq.(i) are  $t_1$ ,  $t_2$  then

$$t_1 = \frac{2u\sin\alpha + \sqrt{4u^2\sin^2\alpha - 8gh}}{2g}$$
 
$$t_2 = \frac{2u\sin\alpha - \sqrt{4u^2\sin^2\alpha - 8gh}}{2g}$$

If particle crosses the wall at times  $t_1$  and  $t_2$  respectively, then time of flight t is

respectively, then time of flight 
$$t$$
 is 
$$t = \sqrt{t_1 t_2}$$
 or  $t^2 = t_1 t_2$  
$$\therefore \left(\frac{2u \sin \alpha}{g}\right)^2 = \frac{(2u \sin \alpha)^2 - (4u^2 \sin^2 \alpha - 8gh)}{4g^2}$$
 or 
$$\frac{4u^2 \sin^2 \alpha}{g^2} = \frac{8gh}{4g^2}$$
 or 
$$2u^2 \sin^2 \alpha = gh$$
 Given,  $u = \sqrt{2gh}$  
$$\therefore 2(2gh)\sin^2 \alpha = gh$$
 or 
$$\sin^2 \alpha = \frac{1}{4}$$
 or 
$$\sin^2 \alpha = \frac{1}{2}$$
 
$$\therefore \alpha = 30^\circ$$

416 **(b)** 

According to given problem  $\frac{1}{2}mv^2 = as^2$ 

$$\Rightarrow v = s \sqrt{\frac{2a}{m}}$$
So  $a_R = \frac{v^2}{R} = \frac{2as^2}{mR}$  ...(i)

Further more as

$$a_t = \frac{dv}{dt} = \frac{dv}{ds} \cdot \frac{ds}{dt} = v \frac{dv}{ds}$$
 ...(ii)

By chain rule

Which is light of equation (i) i.e.  $v = s \sqrt{\frac{2a}{m}}$  yields

$$a_t = \left[ s \sqrt{\frac{2a}{m}} \right] \left[ \sqrt{\frac{2a}{m}} \right] = \frac{2as}{m}$$
 ...(iii)

So that 
$$a = \sqrt{a_R^2 + a_t^2} = \sqrt{\left[\frac{2as^2}{mR}\right]^2 \left[\frac{2as}{m}\right]^2}$$

Hence 
$$a = \frac{2as}{m}\sqrt{1 + [s/R]^2}$$

$$\therefore F = ma = 2as\sqrt{1 + [s/R]^2}$$

417 (a)

 $F = \frac{mv^2}{r}$ . If m and v are constants then  $F \propto \frac{1}{r}$ 





$$\therefore \frac{F_1}{F_2} = \left(\frac{r_2}{r_1}\right)$$

418 (d)

For horizontal motion,

$$nw = v_0 t \text{ or } t = \frac{nw}{v_0}$$

For vertical motion,  $nh = \frac{1}{2}gt^2$ 

or 
$$\frac{1}{2}g\left(\frac{n^2w^2}{v_0^2}\right) = nh$$
 or  $n = \frac{2hv_0^2}{gw^2}$ 

419 (d)

It spends negligible time on earth ie, it performs projectile motion

Here maximum range  $R_{\text{max}} = 1 \text{ m}$ 

$$\frac{u^2}{g} = 1$$

$$u^2 = 1 \times 9.8$$

$$u = \sqrt{9.8} = 3.13 \text{ ms}^{-1}$$

As we know for hemisphere the particle will leave the sphere at height h = 2r/3

$$h = \frac{2}{3} \times 21 = 14m$$

But from the bottom

$$H = h + r = 14 + 21 = 35 metre$$

421 (c)

Speeds at the top point of each wheel will equal and is equal to the speed of centre of mass.

422 (c)



$$\therefore \theta = \tan^{-1}\left(\frac{v^2}{rg}\right) = \tan^{-1}\left(\frac{10 \times 10}{10 \times 10}\right)$$

$$\theta = \tan^{-1}(1) = 45^{\circ}$$

423 (d)

Let u be initial velocity of projection at angle  $\theta$ with the horizontal. Then, horizontal range,

$$R = \frac{u^2 \sin 2\theta}{g}$$

and maximum height  $H = \frac{u^2 \sin 2\theta}{2a}$ 

Given,  $R = 4\sqrt{3}H$ 

$$\therefore \frac{u^2 \sin 2\theta}{g} = 4\sqrt{3} \cdot \frac{u^2 \sin^2 \theta}{2g}$$

$$\therefore \ 2\sin\theta\cos\theta = 2\sqrt{3}\sin^2\theta$$

or 
$$\frac{\cos \theta}{\sin \theta} = \sqrt{3}$$

or 
$$\cot \theta = \sqrt{3} = \cot 30^{\circ}$$

424 (d)

Time period = 40 sec

No. of revolution = 
$$\frac{\text{Total time}}{\text{Time period}} = \frac{140 \text{ sec}}{40 \text{ sec}} = 3.5 \text{ Rev}.$$

So, distance =  $3.5 \times 2\pi R = 3.5 \times 2\pi \times 10 =$ 220m.

425 (a)

The horizontal distance covered by the bomb,

$$BC = v_H \times \sqrt{\frac{2h}{g}} = 150\sqrt{\frac{2 \times 80}{10}} = 600 \ m$$



: The distance of target from dropping point of

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{(80)^2 + (600)^2}$$

426 (b)

By using equation  $\omega^2 = \omega_0^2 - 2\alpha\theta$ 

$$\left(\frac{\omega_0}{2}\right)^2 = \omega_0^2 - 2\alpha(2\pi n) \Rightarrow \alpha = \frac{3}{4} \frac{\omega_0^2}{4\pi \times 36}, (n = 36)$$

Now let fan completes total n' revolution from the starting to come to rest

$$0 = \omega_0^2 - 2\alpha(2\pi n') \Rightarrow n' = \frac{\omega_0^2}{4\alpha\pi}$$

Substituting the value of  $\alpha$  from equation (i)

$$n' = \frac{\omega_0^2}{4\pi} \frac{4 \times 4\pi \times 36}{3\omega_0^2} = 48 \text{ revolution}$$

Number of rotation = 48 - 36 = 12

427 (a)

One force must lie in between sum and difference of two other forces.

428 (c)

 $F = m\omega^2 R : F \propto \omega^2$  (m and R are constant) If angular velocity is doubled force will becomes four times

$$v_H = \sqrt{rg} = \sqrt{1 \times 9.8} = 3.1 \text{ ms}^{-1}$$



430 (c)

Refer figure when the velocity vector makes an angle  $\alpha$  with the horizontal, the component of acceleration, perpendicular to velocity, ie, the centripetal acceleration is  $g\cos\alpha$ . As horizontal component of velocity remains unchanged in angular projection of projectile, hence



$$v\cos\alpha = u\cos\theta$$
 or  $v = \frac{u\cos\theta}{\cos\alpha}$ 

As,  $g \cos \alpha$  provides centripetal acceleration, hence

$$g\cos\alpha = \frac{v^2}{r}$$
 or  $\frac{v^2}{g\cos\alpha} = \frac{u^2\cos^2\theta}{g\cos^3\alpha}$ 

431 (a)

$$(\overrightarrow{A} + \overrightarrow{B}) \cdot (\overrightarrow{A} - \overrightarrow{B}) = 0$$
  
 $A^2 - B^2 = 0 \text{ or } A = B.$ 

432 (b)

Angular momentum 
$$\vec{L} = \vec{r} \times \vec{p}$$
  
=  $(2\hat{\imath} + 2\hat{\jmath} + \hat{k}) \times (2\hat{\imath} - 2\hat{\jmath} + \hat{k}) = 4\hat{\imath} - 8\hat{k}$ 

433 (a)

Since the block rises to the same heights in all the four cases, from conversation of energy, speed of the block at highest point will be same in all four cases. Say it is  $v_0$ . Equation of motion will be



$$N + mg = \frac{mv_0^2}{R}$$
or 
$$N = \frac{mv_0^2}{R} - mg$$

R (the radius of curvature) in first case minimum. Therefore, normal reaction N will be maximum in first case.

434 (a)

 $\frac{v^2}{r} = a$ , the centripetal acceleration [Given]



If v is doubled,  $a'' = \frac{4v^2}{r} = 4a$ 

435 **(b)** 

Using the relation

$$\frac{mv^2}{r} = \mu R, \qquad R = mg$$

$$\frac{mv^2}{r} = \mu mg \implies v^2 = \mu rg$$

$$v^2 = 0.6 \times 150 \times 10$$

 $v^2 = 0.6 \times 150 \times 150$ 

436 **(c)** 

As seen from the cart the projectile moves vertically upward and comes back.

The time taken by cart to cover 80 m

$$= \frac{s}{v} = \frac{80}{30} = \frac{8}{3}$$
s

Given, u = ?, v = 0,  $a = -g = 10 \text{ms}^{-2}$ 

(for a projectile going upward)

and 
$$t = \frac{8/3}{2} = \frac{4}{3}$$
s

From first equation of motion

$$v = u + at$$

$$0 = u - 10 \times \frac{4}{3}$$

$$=\frac{40}{3}$$
 ms⁻¹

438 (a)

$$T = \frac{2u\sin\theta}{g} \Rightarrow u = \frac{T \times g}{2\sin\theta} = \frac{2 \times 9.8}{2 \times \sin 30}$$
$$= 19.6 \text{ m/s}$$

439 (a)

Direction of velocity is always tangent to path, so at the top of trajectory it is in horizontal direction and acceleration due to gravity is always in vertically downward direction. Hence, **v** and **g** are perpendicular to each other.

441 (a)

If air resistance is taken into consideration then range and maximum height, both will decrease

443 **(b)** 

$$v = \sqrt{\mu rg} = \sqrt{0.6 \times 150 \times 10} = 30 m/s$$

444 (a)



So,  $V_r = 2\omega R \sin(\omega t)$ 

At 
$$t = T/2, V_r = 0$$

So two half cycles will take place

445 (c)

Centrifugal force on rod,  $F = \frac{mv^2}{r}$  along BF. Let  $\theta$  be the angle which the rod makes with the



vertical. Forces acting on the rod are shown in figure



Resolving mg and F into two rectangular components, we have,

Forces parallel to rod,

$$mg\cos\theta + \frac{mv^2}{r}\sin\theta = T$$

Force perpendicular rod

$$= mg\sin\theta - \frac{mv^2}{r}\cos\theta$$

The rod will be balanced if

$$mg\sin\theta = \frac{mv^2}{r}\cos\theta = 0$$

or 
$$mg\sin\theta = \frac{mv^2}{r}\cos\theta$$

or 
$$mg \sin \theta = \frac{mv^2}{r} \cos \theta$$
  
or  $\tan \theta = \frac{v^2}{rg} = \frac{(10)^2}{10 \times 10} = 1 = \tan 45^\circ \text{ or } \theta = 45^\circ$ 

446 (c)

Horizontal range of the object fired,

$$R = \frac{u^2 \sin 2\theta}{g}$$

At the highest point, when object is exploded into two equal masses, then

$$2mu\cos\theta = m(0) + mv$$

or 
$$v = 2u \cos \theta$$

It means, the horizontal velocity becomes double at the highest point, hence it will cover double the distance during the remaining flight.

: Total horizontal range of the other part

$$\frac{R}{2} + R = \frac{3R}{2}$$

$$= \frac{3}{2} \frac{u^2 \sin 2\theta}{g}$$

$$= \frac{3}{2} \times \frac{(100)^2 \times 2 \sin \theta \cos \theta}{g}$$

$$= \frac{3}{2} \times \frac{(100)^2 \times 2 \times \frac{3}{5} \times \frac{4}{5}}{10} = 1440 \text{ m}$$
448 **(b)**



Tension T in the string will provide centripetal

$$\Rightarrow \frac{mv^2}{l} = T \qquad ...(i)$$

Also, tension T is provided by the hanging ball of

$$\Rightarrow T = mg \qquad ...(ii)$$

$$mg = \frac{mv^2}{l} \Rightarrow g = \frac{v^2}{l}$$

It is the centripetal acceleration of a moving ball

Horizontal component of velocity at A



$$v_H = u \cos 60^\circ = \frac{u}{2} \therefore AC = u_H \times t = \frac{ut}{2}$$

$$AB = AC \sec 30^{\circ} = \frac{ut}{2} \times \frac{2}{\sqrt{3}} = \frac{ut}{2}$$

450 (b)

$$mg = 20N$$
 and  $\frac{mv^2}{r} = \frac{2\times(4)^2}{1} = 32N$ 

It is clear that 52 N tension will be at the bottom of the circle. Because we know that  $T_{\text{Bottom}} =$ 

$$mg + \frac{mv^2}{r}$$

451 (d)

$$T\cos 30^{\circ} = mg$$

or 
$$T = \frac{mg}{\cos 30^{\circ}} = \frac{\sqrt{3} \times 9.8}{\sqrt{3}/2} = 19.6$$
N

$$F = T\sin 30^\circ = 19.6 \times \frac{1}{2} = 9.8$$
N



When particle moves in circle, then the resultant force must act towards the center and its magnitude F must satisfy



$$F = \frac{mv^2}{l}$$

This resultant force is directed towards the center 458 (c) and it is called centripetal force. This force originates form tension T.

$$\therefore F = \frac{mv^2}{l} = T$$

454 (c)

$$\alpha < \beta$$
 if  $\vec{B} < \vec{A}$  or  $B < A$ 



455 (b)

Due to centrifugal force

456 (c)

Horizontal component of velocity at angle 60° Horizontal component of velocity at angle 45° ie,  $\cos 60^{\circ} = u \cos 45^{\circ}$ 

$$147 \times \frac{1}{2} = v \times \frac{1}{\sqrt{2}}$$
or  $v = \frac{147}{\sqrt{2}} \text{ms}^{-1}$ 

vertical component of velocity at angle 60°

$$u = u \sin 60^\circ = \frac{147\sqrt{3}}{2} \text{ m}$$

vertical component of velocity at angle 45° =

$$= \frac{147}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{147}{2} \text{m}$$
  
But  $v_y = u_y + at$ 

$$\therefore \frac{147}{2} = \frac{147\sqrt{3}}{2} - 9.8t$$

or 
$$9.8t = \frac{147}{2}(\sqrt{3} - 1)$$

t = 5.49 s

457 (d)



The particle is moving in circular path From the figure,  $mg = R \sin \theta$  ... (i)

$$\frac{mv^2}{r} = R\cos\theta \qquad ...(ii)$$

From equation (i) and (ii) we get  $\tan \theta = \frac{rg}{v^2}$  but  $\tan \theta = \frac{r}{h}$ 

$$\therefore h = \frac{v^2}{a} = \frac{(0.5)^2}{10} = 0.025m = 2.5 cm$$

At the topmost point of the projectile there is only horizontal component of velocity and acceleration due to gravity is vertically downward, so velocity and acceleration are perpendicular to each other.

460 (c)

In projectile motion, horizontal component of velocity remains constant

$$\therefore v\cos\theta = u\cos 2\theta$$

$$\Rightarrow v = \frac{u \cos 2\theta}{\cos \theta} = \frac{u(2\cos^2 \theta - 1)}{\cos \theta}$$
$$= u(2\cos \theta - \sec \theta)$$

Since 
$$v^2 - v_0^2 = 2\vec{a} \cdot \vec{s} = 2\vec{a} \cdot \left(\frac{\vec{v} + \vec{v}_0}{2}\right) t$$
  
or  $\vec{v} \cdot \vec{v} - \vec{v}_0 \cdot \vec{v}_0 = (\vec{v} + \vec{v}_0) \cdot \vec{a} t$   
or  $\vec{v} \cdot (\vec{v} - \vec{a} t) = \vec{v}_0 \cdot (\vec{v}_0 + \vec{a} t)$ 

In complete revolution change in velocity becomes zero so average acceleration will be zero

463 (d)

The time of ascent = time of descent =  $t_0$  $T = \text{total time of flight} = 2t_0$ 



$$\sin 45^\circ = \frac{9.8}{BC} = \frac{9.8}{s}$$

$$\therefore s = 9.8\sqrt{2}$$

$$\therefore s = ut + \frac{1}{2}at^2$$

$$s = 0 \times t + \frac{1}{2} (g \sin 45^{\circ}) t_0^2$$

or 
$$9.8\sqrt{2} = \frac{9.8}{2\sqrt{2}}t_0^2$$

$$t_0^2 = 4$$

$$t_0 = 2s$$

$$\therefore T = 2t_0 - 4s$$

$$\omega = \frac{v}{r} = \frac{100}{100} = 1 \ rad/s$$

Range 
$$=\frac{u^2 \sin 2\theta}{g} = 200 m$$
  
 $\Rightarrow \frac{u^2 (2 \sin \theta \cos \theta)}{g} = 200 m$  ...(i)

Time of flight =  $\frac{2u\sin\theta}{g} = 5s$  ...(ii)

From equations (i) and (ii)



 $u\cos\theta = 40 \, m/s$ 

$$|\widehat{A} \times \widehat{B}| = (1)(1) \sin \theta = \sin \theta.$$

469 (c)

Equating the moments about R

$$6 \times PR = 4 \times RQ$$

$$PR = \frac{4}{6}RQ = \frac{2}{3}RQ$$

470 **(b)** 

Centripetal force =  $mr\omega^2 = 5 \times 1 \times (2)^2 = 20 N$ 

471 (c)

$$H = \frac{u^2 \sin^2 \theta}{2g} \Longrightarrow \frac{H_1}{H_2} = \frac{u^2 \sin^2 \theta_1}{u^2 \sin^2 \theta_2}$$

$$\frac{3}{1} = \frac{\sin^2 \theta_1}{\sin^2 \theta_2} \implies \frac{\sin \theta_1}{\sin \theta_2} = \frac{\sqrt{3}}{1}$$

Logically, we can conclude that

$$\theta_1 = 60^{\circ}$$
,

$$\theta_2 = 30^{\circ}$$

Again 
$$R = \frac{u^2 \sin 2\theta}{g}$$

$$\therefore \frac{R_1}{R_2} = \frac{4 u^2 \sin 2\theta_1}{u^2 \sin 2\theta_2}$$

$$\frac{R_1}{R_2} = \frac{4\sin 2(60^\circ)}{\sin 2(30^\circ)} = \frac{4\sin 120^\circ}{\sin 60^\circ}$$

or 
$$\frac{R_1}{R_2} = \frac{4 \times \frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}} = 4$$

472 **(b**)

$$\frac{v}{g}$$
 = 20 or  $v^2$  = 20g = 20 × 9.8 = 196,  $v$ 

$$= 14 \text{ ms}^{-1}$$

473 (d)

$$h_{\text{max}} = \frac{u^2}{2g} = 10 \quad [\because \theta = 90^{\circ}]$$

$$u^2 = 200$$

$$R_{\text{max}} = \frac{u^2}{a} = 20m$$

474 (d)

For successfully completing the loop,

$$h = \frac{5}{4}R \Rightarrow R = \frac{2h}{5} = \frac{2 \times 5}{5} = 2cm$$

475 (a)

$$\vec{P} \cdot \vec{Q} = 0 \Rightarrow \vec{P} \perp \vec{Q} \text{ or } \theta = 90^{\circ}$$

$$|\overrightarrow{P} \times \overrightarrow{Q}| = PQ \sin 90^\circ = PQ \text{ or } |\overrightarrow{P}| |\overrightarrow{Q}|$$

476 (a)

Here,  $r = 100 \text{m}, v = 7 \text{ms}^{-1}, m = 60 \text{kg}$ 

Reading registered= resultant force =?

Two force are acting, weight mg and centripetal

force  $\frac{mv^2}{r}$  at 90° to each other

$$\therefore \text{ Resultant force} = \sqrt{(mg)^2 + \left(\frac{mv^2}{r}\right)^2} =$$

$$mg\left[1+\left(\frac{v^2}{rg}\right)^2\right]^{1/2}$$

$$= 60 \times 9.8 \left[ 1 + \left( \frac{7 \times 7}{100 \times 9.8} \right)^2 \right]^{1/2}$$

$$= 60.075 \times 9.8 \text{ N} = 60.075 \text{ kg-wt}$$

477 (d)

$$R = \frac{v^2 \sin 2\theta}{g}$$

In the given problem  $v^2 \sin 2\theta = \text{constant}$ 

$$v^2 \sin 2\theta = \left(\frac{v}{2}\right)^2 \sin 30^\circ = \frac{v^2}{8}$$

or 
$$\sin 2\theta = \frac{1}{8}$$
 or  $2\theta = \sin^{-1} \left[\frac{1}{8}\right]$  or  $\theta = \frac{1}{2}\sin^{-1} \left[\frac{1}{8}\right]$ 

478 (b)

$$\omega^2 R = 4\pi^2 n^2 r = 4\pi^2 \left(\frac{1200}{60}\right)^2 \times 30 \times 10^{-2}$$
$$= 4732 \, m/s^2$$

479 (b)

$$ma\cos\theta = mg\cos(90 - \theta)$$

$$\Rightarrow \frac{a}{g} = \tan \theta \Rightarrow \frac{a}{g} = \frac{dy}{dx}$$

$$\Rightarrow \frac{d}{dx}(kx)^2 = \frac{a}{g} \Rightarrow x = \frac{a}{2gk}$$

480 (d)

$$\theta = 30^{\circ}$$

$$\frac{R}{H} = \frac{v^2(2\sin\theta\cos\theta)}{g} \times \frac{2g}{v^2\sin^2\theta} = \frac{4\cos\theta}{\sin\theta}$$

or 
$$R = 4 \cot 30^{\circ} \times H = 4\sqrt{3}$$

481 (b)

$$\omega = \frac{v}{r} = \frac{10}{100} = 0.1 rad/s$$

482 (d)

Height, 
$$h = \frac{1}{2}gt^2 \implies t = \sqrt{\frac{2 \times 1960}{9.8}} = 20s$$

 $s = AB = ut = 600 \times \frac{20}{60 \times 60} = 3.33 \text{ km}$ 

483 (c)

The vector is 
$$\hat{i} - [\vec{A} + \vec{B} + \vec{C}]$$
  
=  $\hat{i} - [(2\hat{i} - 4\hat{j} + 7\hat{k}) + (7\hat{i} + 2\hat{j} - 5\hat{k}) + (-4\hat{i} + 7\hat{j} + 3\hat{k})]$   
=  $-4\hat{i} - 5\hat{j} - 5\hat{k}$ 

484 (a)

Distance covered in 'n' revolution = 
$$n \ 2 \pi r = n\pi D$$
  
 $\Rightarrow 2000\pi D = 9500 [\text{As } n = 200, \text{distance}]$ 

$$= 9500 \, m$$

$$\Rightarrow D = \frac{9500}{2000 \times \pi} = 1.5 m$$







 $|\vec{A} \times \vec{B}| = AB \sin\theta$ . As  $\sin\theta \le 1$ , therefore  $AB \sin\theta$ can not be more than AB.

$$R^2 = R^2 + R^2 + 2R^2 \cos\theta \quad \text{or} \quad R^2 = 2R^2 + 2R^2 \cos\theta$$

$$\label{eq:theta_total} \frac{1}{2} = 1 + cos\theta \ \ \text{or} \ \ cos\theta = -\frac{1}{2} \ \ \text{or} \ \ \ \theta = 120^\circ$$

## 487 (a)

Linear velocity,

$$v = \omega r = 2\pi n r = 2 \times 3.14 \times 3 \times 0.1 = 1.88 \ m/s$$
  
Acceleration,  $a = \omega^2 r = (6\pi)^2 \times 0.1 = 35.5 \ m/s^2$   
Tension in string,  $T = m\omega^2 r = 1 \times (6\pi)^2 \times 0.1 = 35.5 \ N$ 

488 (b)

Work done by centripetal force is always zero

## 489 (d)

The various forces acting on the particle, are its weight mg acting vertically downwards, normal reaction N. Equating the vertical forces, we have



 $N \sin \theta = mg \dots (i)$ 

Also, centripetal force,

$$\frac{mv^2}{R} = N\cos\theta \dots (ii)$$

From Eqs. (i) and (ii), we get

$$\tan \theta = \frac{Rg}{v^2} \dots$$
 (iii)

Also, from triangle OAB,

$$\tan \theta = \frac{R}{h} \dots (iv)$$

Equating Eqs. (iii) and (iv), we get

$$h = \frac{v^2}{g}$$

Given,  $v = 0.5 \text{ ms}^{-1} \text{ and } g = 10 \text{ ms}^{-2}$ 

$$h\frac{(0.5)^2}{10} = 0.025 \text{ m} = 2.5 \text{ cm}$$

490 (b)

Given, 
$$\vec{\mathbf{u}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} = u_x\hat{\mathbf{i}} + u_y\hat{\mathbf{j}}$$

Then  $u_x = u \cos \theta$ 

and 
$$u_y = 2 = u \cos \theta$$

$$\therefore \tan \theta = \frac{u \sin \theta}{u \cos \theta} = \frac{2}{1} = 2$$

The equation of trajectory of a projectile motion is

$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$
$$= x \tan \theta - \frac{gx^2}{2(u \cos \theta)^2}$$

$$= x \tan \theta - \frac{gx^2}{2(u \cos \theta)^2}$$

$$= x \times 2 - \frac{10 \times x^2}{2(1)^2} = 2x - 5x^2$$

$$T = mg + m\omega^2 r = m\{g + 4\pi^2 n^2 r\}$$
$$= m\left\{g + \left(4\pi^2 \left(\frac{n}{60}\right)^2 r\right)\right\} = m\left\{g + \left(\frac{\pi^2 n^2 r}{900}\right)\right\}$$

# 492 (d)

Kinetic energy = 
$$\frac{1}{2}mv^2 = K = as^2$$

or 
$$mv^2 = 2as^2$$

Centripetal force = 
$$\frac{mv^2}{R} = \frac{2as^2}{R}$$

### 493 (b)

 $\vec{A} = A\hat{A} = B\hat{B}$ . let  $\theta$  be the angle between  $\vec{A}$  and  $\vec{B}$ . As per question,

$$\cos\alpha = \frac{(A\widehat{A} + B\widehat{B}) \cdot (A\widehat{B} + B\widehat{A})}{|A\widehat{A} + B\widehat{B}||A\widehat{B} + B\widehat{A}|}$$
or 
$$\cos\alpha = \frac{2AB + (A^2 + B^2)\cos\theta}{(\sqrt{A^2 + B^2 + 2AB}\cos\theta)^2}$$

or 
$$\cos \alpha = \frac{2AB + (A^2 + B^2)\cos\theta}{(\sqrt{A^2 + B^2 + 2AB}\cos\theta)}$$

or 
$$2AB + (A^2 + B^2)\cos\theta = (A^2 + B^2)\cos\alpha +$$

 $2AB\cos\theta\cos\alpha$ 

or 
$$2AB(1 - \cos\alpha\cos\theta)$$

$$= (A^2 + B^2)(\cos\alpha - \cos\theta)$$

or 
$$\frac{2AB}{A^2+B^2} = \frac{\cos\alpha - \cos\theta}{1 - \cos\alpha \cos\theta}$$

or 
$$\frac{2AB}{(A^2+B^2)} = \frac{\cos\alpha - \cos\theta}{1 - \cos\alpha \cos\theta}$$

or 
$$\frac{2AB+(A^2+B^2)}{(A^2+B^2)-AB}$$

$$= \frac{(\cos\alpha\cos\theta) + (1 - \cos\alpha\cos\theta)}{(1 - \cos\alpha\cos\theta) + (\cos\alpha\cos\theta)}$$

or 
$$\frac{(A+B)^2}{(A-B)^2} = \frac{(1+\cos\alpha)(1-\cos\theta)}{(1+\cos\theta)(1-\cos\alpha)}$$

$$=\frac{\tan^2\theta/2}{2}$$

$$\tan^2\theta/2$$

or 
$$\tan \frac{\alpha}{2} = \left(\frac{A-B}{A+B}\right) \tan \frac{\theta}{2}$$

#### 494 (b)

$$10A^2 = 4A^2 + 2A^2 + 2 \times 2A \times \sqrt{2}A \times \cos\theta$$

or 
$$4A^2 = 4\sqrt{2}A\cos\theta$$

or 
$$\cos\theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = 45^{\circ}$$

$$T\sin\theta = M\omega^2 R \qquad ...(i)$$

$$T\sin\theta = M\omega^2 L\sin\theta$$
 ...(ii)

From (i) and (ii)

$$T = M\omega^2 L$$

$$= M 4\pi^2 n^2 L$$

$$= M 4\pi^2 \left(\frac{2}{\pi}\right)^2 L = 16 ML$$



496 (d)

$$R = \frac{u^2 \sin 2\theta}{g} \therefore R \propto u^2$$
. If initial velocity be

doubled then range will become four times

497 (a)

$$t = \sqrt{\frac{2 \times 2000}{10}} = \sqrt{400} = 20 \text{ s}$$

$$x = 100 \text{ms}^{-1} \times 20 \text{s} = 2000 \text{ m} = 2 \text{km}$$

498 (a)

Here, 
$$\alpha = 2\theta$$
,  $\beta = \theta$ 



Time of flight of A is,

$$T_1 = \frac{2u\sin(\alpha - \beta)}{g\cos\beta}$$

$$=\frac{2u\sin(2\theta-\theta)}{2}$$

$$=\frac{2u}{a}\tan\theta$$

Time of flight of *B* is, 
$$T_2 = \frac{2u\sin\theta}{g\cos\theta}$$

$$=\frac{2u}{g}\tan\theta$$

So,  $T_1 = T_2$ . The acceleration of both the particles is g downwards. Therefore, relative acceleration between the two I zero or relative motion between the two is uniform. The relative velocity of A w.r.t. B is towardsAB, therefore collision will take place between the two in mid air.

499 (a)

If it is being hit then

$$d = v_0 t + \frac{1}{2}at^2 = (u\cos\theta)t$$

or 
$$t = \frac{u \cos \theta - v_0}{a/2}$$



$$\therefore \ \ t = \frac{600 \times \frac{1}{2} - 250}{10} = 5 \text{ s}$$

$$H = (u\sin\theta)t - \frac{1}{2} \times gt^2$$

$$=600\times\frac{\sqrt{3}}{2}\times5-\frac{1}{2}\times10\times25$$

$$H = 2473 \text{ m}$$

500 **(b)** 

$$a^2 + b^2 + 2ab \cos\theta$$

$$= -a^2 + b^2 - 2ab \cos\theta$$

or 
$$4ab \cos\theta = 0$$

But 
$$4ab \neq 0 : \cos\theta = 0$$
 or  $\theta = 90^{\circ}$ 

Again

 $|\vec{a} + \vec{b}|$  and  $|\vec{a} - \vec{b}|$  are the diagonals of parallelogram whose adjacent sides are  $\vec{a}$  and  $\vec{b}$ .

Since  $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ , therefore, the two diagonals of a parallelogram are equal. So, think of

square. This leads to  $\theta = 90^{\circ}$ .

501 (d)

The ball will be at point P when it is at height of 10 m from the ground. So, we have to find distance OP, which can be calculated by directly considering it as a projectile on a level (OX).



$$OP = R = \frac{u^2 \sin 2\theta}{g}$$

$$=\frac{10^2 \sin(2 \times 30^\circ)}{10}$$

$$=\frac{10\sqrt{3}}{2}=5\sqrt{3}$$

 $= 8.66 \, \mathrm{m}$ 



$$\vec{v} = \vec{\omega} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -4 & 1 \\ 5 & -6 & 6 \end{vmatrix} = -18\hat{i} - 13\hat{j} + 2\hat{k}$$

### 503 (a)

Given 
$$\vec{C} = |\vec{B}|\hat{j} \implies \vec{C} = 5\hat{j}$$
  
Let  $\vec{C} = \vec{A} + \vec{B} = A + 3\hat{i} + 4\hat{j}$   
 $5\hat{j} = A + 3\hat{i} + 4\hat{j}$   
 $\Rightarrow \vec{A} = -3\hat{i} + \hat{j}$ 

$$|\vec{A}| = \sqrt{(3)^2 + (1)^2}$$
  
=  $\sqrt{10}$ 

# 504 (a)

Time of flight = 
$$\frac{2u\sin\theta}{g} = \frac{2u_y}{g} = \frac{2\times u_{\text{vertical}}}{g}$$

### 505 (c)

Change in velocity =  $2v \sin(\theta/2) = 2v \sin 20^{\circ}$ 

### 506 (d)

At maximum height H, the horizontal component of the velocity of the bullet =  $u \cos \theta = u \cos 60^\circ = u/2$ 

### 507 (d)

Tension at the top of the circle,  $T = m\omega^2 r - mg$   $T = 0.4 \times 4\pi^2 n^2 \times 2 - 0.4 \times 9.8 = 122.2N$  $\approx 115.86N$ 

## 508 (c)

Displacement = ABangle between  $\overrightarrow{r_1}$  and  $\overrightarrow{r_2}$  $\theta = 75^{\circ} - 15^{\circ} = 60^{\circ}$ 

From figure

$$AB^{2} = r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}\cos\theta$$

$$= 3^{2} + 4^{2} - 2 \times 3 \times 4\cos60^{\circ}$$

$$= 13$$

$$AB = \sqrt{13}$$

## 509 (b)

The ball reaches nth step in time t, then bn = ut or t = bn/u,

$$nh = \frac{1}{2}gt^2 = \frac{1}{2}g \times \frac{b^2n^2}{u^2}$$
; so  $n = \frac{2u^2h}{gb^2}$ 

Time taken to travel vertical distance nh is

$$t = \sqrt{\frac{2nh}{g}} = \sqrt{\frac{2h}{g} \times \frac{2u^2h}{gb^2}} = \frac{2uh}{gb}$$

#### 510 (b)

We know,  $F = mr\omega^2$  $r\omega^2 = \text{constant}$ 

$$\omega^2 \propto \frac{1}{r}$$

$$\left(\frac{\omega_2}{\omega_1}\right)^2 = \frac{r_1}{r_2}$$

$$\frac{4\omega_1^2}{\omega_1^2} = \frac{8}{r_2} \quad \therefore r_2 = 2 \text{ cm}$$

## 512 (b)



Let t s be time taken by the ball to hit the ground

$$\therefore H = \frac{1}{2} gt^2 \Rightarrow t = \sqrt{\frac{2H}{g}} = \sqrt{\frac{2 \times 19.6m}{9.8 \ ms^{-2}}} = 2s$$

### 513 (c)

Equating velocities along the vertical,

$$v_2 = v_1 \sin 30^\circ \text{ or } \frac{v_2}{v_1} = \frac{1}{2}$$

## 514 (d)

Given, 
$$m = 1 \times 10^{-3} \text{ kg}$$
,  $\omega = 1 \text{ rad s}^{-1} \text{ and } r$   
= 1 m

Hence, centrifugal force =  $m\omega^2 r = 10^{-3} \text{N}$ 1N =  $10^5$  dyne

∴ Centrifugal force = 100 dyne

## 515 (a)

$$a = 4\pi^2 n^2 r = 4\pi^2 \left(\frac{1}{2}\right)^2 \times 50 = 493 \ cm/s^2$$

## 516 (a)



The radius of circular path is 2m and the speed of the object is 4m/s

The magnitude of acceleration is

$$a = \frac{v^2}{R} = \frac{16}{2} = 8m/s^2$$

The acceleration is directed towards the centre Therefore, when an object is at y = 2m, its acceleration is  $-8\hat{j}$   $m/s^2$ 

## 517 (b)

Maximum height of projectile

$$H = \frac{u^2 \sin^2 \theta}{2g}$$

$$\therefore H = \frac{(10)^2 \times \sin^2(30^\circ)}{2 \times 10}$$

$$= \frac{5}{4} = 1.25 \text{ m}$$

Time to reach maximum height



$$t = \frac{u \sin \theta}{g}$$

$$\therefore t = \frac{10 \times \sin 30^{\circ}}{10} = 0.5s$$

So, distance of vertical fall in 0.5s

$$h = \frac{1}{2}gt^2$$

or 
$$h = \frac{1}{2} \times 10 \times (0.5)^2 = 1.25 \text{ m}$$

 $\therefore$  Height of second ball = 1.25 + 1.25 = 2.5 m

## 518 (b)

Initial velocity

$$v_1 = v$$

Final velocity  $v_2 = -v$ 

Initial momentum  $p_1 = mv$ 

Final momentum  $p_1 = m(-v) = -mv$ 

Change in momentum  $\Delta p = p_1 - p_2$ 

$$= mv - (-mv)$$

$$=2mvj$$



## 519 (d)

Given, initial velocity =  $v_0$ 

final velocity = 0

deceleration  $a = -\alpha x^2$  .... (i)

Let the distance travelled by the particle be s,

Now, we know that

$$a = \frac{dv}{dt} = \frac{dv}{dt} \times \frac{dx}{dx} = \frac{vdv}{dx}$$

or 
$$a = v \frac{dv}{dx}$$
 ... (ii)

From Eqs. (i) and (ii)

$$v\frac{dv}{dx} = -\alpha x^2$$

or 
$$vdv = -\alpha x^2 dx$$

On integrating with limit  $v_0 \rightarrow 0$  and  $0 \rightarrow s$ 

$$\therefore \int_{v_0}^0 v dv = \int_0^s -\alpha x^2 dx$$

or 
$$\left[\frac{v^2}{2}\right]_{v_0}^0 = -\alpha \left[\frac{x^3}{3}\right]_0^s$$

$$-\frac{v_0^2}{2} = -\frac{\alpha(s)^3}{3}$$

or 
$$\frac{v_0^2}{2} = \frac{\alpha s^3}{3}$$

or 
$$\frac{3v_0^2}{2a} = s^3$$

or 
$$s = \left[\frac{3v_0^2}{2\alpha}\right]^{1/3}$$

# 520 (a)

$$H = \frac{u^2 \sin^2 \theta}{2g} \text{ and } T = \frac{2u \sin \theta}{g}$$

So 
$$\frac{H}{T^2} = \frac{u^2 \sin^2 \theta / 2g}{4u^2 \sin^2 \theta / g^2} = \frac{g}{8} = \frac{5}{4}$$

### 521 (a)

$$T_{\text{max}} = m\omega_{\text{max}}^2 r + mg \Rightarrow \frac{T_{\text{max}}}{m} = \omega^2 r + g$$

$$\Rightarrow \frac{30}{0.5} - 10 = \omega_{\text{max}}^2 r \Rightarrow \omega_{\text{max}} = \sqrt{\frac{50}{r}} = \sqrt{\frac{50}{2}}$$

### 522 (d)

Tension in the string  $T_0 = mR\omega_0^2$ 

In the second case  $T = m(2R)(4\omega_0^2) = 8mR\omega_0^2 = 8T_0$ 

## 523 (a)

The object will slip if centripetal force acting on it is more than friction force.

So, 
$$mr\omega^2 > \mu mg$$

$$r\omega^2 \ge \mu g$$

$$r\omega^2 = constant$$

$$\frac{r_1}{r_2} = \left(\frac{\omega_2}{\omega_1}\right)^2$$

$$\frac{4}{r_2} = \left(\frac{2\omega}{\omega}\right)^2$$

$$r_2 = 1 \text{ cm}$$

#### 524 (c)

Kinetic energy at highest point=  $K \cos^2 45^\circ = \frac{K}{2}$ 

## 525 (b)

$$F^2 = F^2 + F^2 + 2F^2 \cos\theta$$

or 
$$F^2 = 2F^2(1 + \cos\theta)$$

or 
$$1 + \cos\theta = \frac{1}{2}$$

or 
$$\cos\theta = -\frac{1}{2}$$
 or  $\theta = 120^{\circ}$ 

$$\therefore \cos 120^{\circ} = -\frac{1}{2}$$

## 526 (a)

The value of frictional force should be equal or more than required centripetal force. i.e.  $\mu mg \ge mv^2$ 

## 527 (d)

The centripetal force,  $F = \frac{mv^2}{r} \Rightarrow r = \frac{mv^2}{F}$ 

 $r \propto v^2$  or  $v \propto \sqrt{r}$  [If m and F are constant]

$$\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{r_1}{r_2}} = \sqrt{\frac{1}{2}}$$







528 (b)

Here, r = 100 m, t = 62.8 s

In one circular loop, displacement = 0

∴ Velocity=0

Distance traveled  $=2\pi r$ 

: Speed = 
$$\frac{2\pi r}{t}$$
 =  $\frac{2.14 \times 100}{62.8}$  = 10 ms⁻¹

530 (b)

$$R = \frac{2 \times 30 \times 30 \sin 30^{\circ} \cos 60^{\circ}}{10 \cos^{2} 30^{\circ}}$$
$$= 180 \times \frac{1}{2} \times \frac{1}{2} \times \frac{2 \times 2}{3} \text{m} = 60 \text{ m}$$

531 (b)

Time 
$$T = \frac{2\pi r}{v}$$



and 
$$t_0 = \frac{T}{2} = \frac{\pi r}{v}$$
  

$$v_{av} = \frac{2r}{\pi r/v} = \frac{2v}{\pi}$$

532 (b)

When a particle moves in a circular motion, it is acted upon by centripetal force directed towards the centre. Hence, centripetal acceleration is

$$a_{N} = \frac{dv}{dt} = \frac{v^{2}}{R}$$
or 
$$\int_{0}^{t} \frac{dt}{R} = \int_{v_{0}}^{v} \frac{dv}{v^{2}}$$
or 
$$t = -R \left[\frac{1}{v}\right]_{v_{0}}^{v}$$

$$v = \frac{v_{0}R}{R - v_{0}t}$$
Also 
$$\frac{dr}{dt} = \frac{v_{0}R}{(R - v_{0}t)}$$

$$\int_{0}^{2\pi R} dr = v_{0}R \int_{0}^{T} \frac{dt}{R - v_{0}t}$$

$$\Rightarrow T = \frac{R}{v_{0}}(1 - 1 - e^{-2\pi})$$



533 (c)

Average velocity = 
$$\frac{\text{displacement}}{\text{time}}$$

$$V_{\rm av} = \frac{\sqrt{H^2 + \frac{R^2}{4}}}{T/2}$$
 ....(i)



Here  $H = \text{maximum height} = \frac{v^2 \sin^2 \theta}{2g}$ 

$$R = \text{range} = \frac{v^2 \sin 2\theta}{g}$$

and 
$$T$$
 =time of flight =  $\frac{2v\sin\theta}{g}$ 

Substituting in Eq. (i), we get

$$v_{\rm av} = \frac{v}{2}\sqrt{1 + 3\cos^2\theta}$$

535 (a)

Let the angle from the vertical be $\theta$ . The diagram showing the different forces is given



 $\tan \theta = \frac{a}{a}$ Form the figure,

$$\theta = \tan^{-1} \frac{a}{g}$$

536 (d)

Centripetal acceleration,  $a_c = \frac{v^2}{R}$ 

Where v is the speed of an object and R is the radius of the circle

It is always directed towards the centre of the circle. Since v and R are constants for a given uniform circular motion, therefore the magnitude of centripetal acceleration is also constant. However, the direction of centripetal acceleration changes continuously. Therefore, a centripetal acceleration is not a constant vector

$$\vec{A} + \vec{B} = 8\hat{\imath} - 2\hat{\jmath} + 16\hat{k}$$

$$m = \frac{0}{|\vec{A} + \vec{B}|} = 0$$



Let  $\Delta t$  be the time interval. Then,



$$2h = (u_x)(\Delta t)$$
  
or  $u_x = \frac{2h}{\Delta t}$  ...(i)

Further, 
$$h = u_y t - \frac{1}{2}gt^2$$
  
or  $gt^2 - 2u_y t + 2h = 0$ 

$$\therefore t_1 = \frac{2u_y + \sqrt{4u_y^2 - 8gh}}{2g}$$
and  $t_2 = \frac{2u_y - \sqrt{4u_y^2 - 8gh}}{2g}$ 

and 
$$t_2 = \frac{\sqrt{y^2 - 8gt}}{\sqrt{4u_y^2 - 8gt}}$$

$$\Delta t = t_1 - t_2 = \frac{\sqrt{4u_y^2 - 8gh}}{g}$$
or  $u_y^2 = \frac{g^2(\Delta t)^2}{4} + 2gh$ 

Given, 
$$u_x^2 + u_y^2 = (2\sqrt{gh})^2$$

$$\therefore \frac{4h^2}{(\Delta t)^2} + \frac{g^2(\Delta t)^2}{4} + 2gh = 4gh$$

$$\frac{g^2}{4}(\Delta t)^4 - 2gh(\Delta t)^2 + 4h^2 = 0$$
$$(\Delta t)^2 = \frac{2gh \pm \sqrt{4g^2h^2 - 4g^2h^2}}{g^2/2} = \frac{4h}{g}$$

$$(\Delta t)^2 = \frac{-g^2 - \sqrt{g^2 + g^2}}{g^2/2} = \frac{1}{g^2}$$
or  $\Delta t = 2\sqrt{\frac{h}{g}}$ 

#### 539 (c)

$$\vec{A} \perp \vec{B}$$
, if  $\vec{A} \cdot \vec{B} = AB\cos 90^\circ = 0$   
 $(2\hat{\imath} + a\hat{\jmath} + \hat{k}) \cdot (4\hat{\imath} - 2\hat{\jmath} - \hat{k}) = 0$   
or  $8 - 2a - 2 = 0$  or  $a = 3$ .

#### 540 (c)

$$v = r\omega \Rightarrow \omega = \frac{v}{r} = \text{constant [As } v \text{ and } r \text{ are constant ]}$$

# 541 (d)

In a circular motion

$$a = \frac{v^2}{r} \Rightarrow \frac{a_2}{a_1} = \left(\frac{v_2}{v_1}\right)^2 = \left(\frac{2v_1}{v_1}\right)^2 = 4$$

$$u = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20 \text{ ms}^{-1}$$

Time of ascent= time of descent

$$=\sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 20}{10}} = 2s$$

 $\therefore$  time of flight = 2 +2 = 4s

#### 543 (d)

If the string suddenly breaks, the centripetal force will be zero only tangential force will be present, then the stone travels in tangential direction.

#### 544 (a)

Time of flight (T) is 2t.

$$\therefore T = t2 = \frac{2 u \sin \theta}{g}$$

$$=\frac{2}{8} \times U_{\text{vertical}}$$

#### 545 (d)

Let *v* the velocity of projectile at this instants. Horizontal component of velocity remains unchanged. Therefore,

$$v\cos 30^\circ = 10\cos 60^\circ$$

or 
$$v \frac{\sqrt{3}}{2} = \frac{10}{2}$$
 or  $v = \frac{10}{\sqrt{3}} \text{ ms}^{-1}$ 

#### 546 (a)

$$T = \frac{mv^2}{r} \Rightarrow 25 = \frac{0.25 \times v^2}{1.96} \Rightarrow v = 14 \text{ m/s}$$

#### 547 (a)

Maximum speed  $v = \sqrt{\mu rg} = \sqrt{0.4 \times 30 \times 9.8}$  $= 10.84 \text{ms}^{-1}$ 

#### 548 (a)

Tensions in the respective parts are shown in

$$A \xrightarrow{m} T_2 \qquad T_2 \qquad m \quad T_1 \qquad B$$

Let  $\omega$  be angular velocity, then

$$T_1 - T_2 = m\omega^2 \times r \qquad \dots (i)$$

and 
$$T_2 = m\omega^2(r+2r)$$

$$T_2 = 3m\omega^2 r \qquad ...(ii)$$

From equation (i) and (ii)

$$T_1 = 4m\omega^2 r \Rightarrow \frac{T_1}{T_2} = \frac{4}{3}$$

#### 549 (c)

The tension of the string,

$$T = mr\omega^2$$

$$= 1 \times 1 \times (2)^2 = 4N$$

#### 550 (c)

The forces acting on the ball will be (i) in the direction opposite to its motion ie, frictional force and(ii) weight mg.

#### 552 (c)

An object moving in uniform circular motion is moving around the perimeter of the circle with a constant speed. While the speed of object is constant, its velocity is changing. Velocity being a vector quantity has a constant magnitude but a



changing direction. The direction is always directed tangent line is always pointing in a new direction. Also when it is moving in circular motion towards the centre, hence acceleration is perpendicular to velocity.



553 (b)

Centripetal acceleration  $a_c=v^2/r$ It acts along the radius and directed towards the centre of the circular path

or 
$$t = 200/u$$

Also, 
$$\frac{40}{100} = \frac{1}{2} \times 9.8 \left(\frac{200}{u}\right)^2$$

On solving  $u = 700 \text{ ms}^{-1}$ 

#### 555 (c)

Maximum force of friction = centripetal force  $mv^2$   $100 \times (9)^2$ 

$$\frac{mv^2}{r} = \frac{100 \times (9)^2}{30} = 270 \, N$$

556 (d)

$$v = r\omega = \frac{r \times 2\pi}{T} = \frac{0.06 \times 2\pi}{60} = 6.28 mm/s$$

Magnitude of change in velocity =  $|\overrightarrow{v_2} - \overrightarrow{v_1}|$ =  $\sqrt{v_1^2 + v_2^2}$  = 8.88 mm/s [As  $v_1 = v_2$  = 6.28mm/s]

557 (a)

Power, 
$$P = \vec{F} \cdot \vec{v} = (7\hat{i} + 6\hat{k}) \cdot (3\hat{j} + 4\hat{k}) = 24$$

559 (a)

$$dM = \left(\frac{M}{L}\right) dx$$

Force on 'dM' mass is

$$dF = (dM)\omega^2 x$$



By integration we can get the force exerted by whole liquid

$$\Rightarrow F = \int_0^L \frac{M}{L} \omega^2 x \, dx = \frac{1}{2} M \omega^2 L$$

560 (c)

Given, m = 500 kg,

$$v = 36 \text{ kmh}^{-1} = 36 \times \frac{5}{18} = 10 \text{ ms}^{-1} \text{ and } r$$
  
= 50 m

Centripetal force  $F = \frac{mv^2}{r}$ 

Hence, 
$$F = \frac{500 \times (10)^2}{50} = 1000 \text{ N}$$

561 (d)

Vertical force on the roller = weight of roller + component of force in vertical downward direction =  $(70 \times 10 + 200 \cos 45^{\circ})$ N

562 (c)

From figure,



$$H = (-v_0 \sin \theta)t + \frac{1}{2}gt^2$$

$$v_x = v_0 \cos \theta$$

$$v_y^2 = (v_0 \sin \theta)^2 + 2gH$$

$$v = \sqrt{v_x^2 + v_y^2}$$
 at ground

$$v = \sqrt{v_0^2 + 2gH}$$

It means speed is independent of angle of projection

Also, 
$$\frac{1}{2}gt^2 = H + t v_0 \sin \theta$$

From this, where  $\theta$  increases, t increases Hence, (c) is correct

563 (d)

$$R = \frac{u^2 \sin 2\theta}{g} = \frac{2u_x v_y}{g}$$

 $\therefore$  Range  $\propto$  horizontal initial velocity  $(u_x)$ In path 4 range is maximum so football possess maximum horizontal velocity in the path

564 (a)

Normal reaction at the highest point

$$R = \frac{nv^2}{r} - mg$$

Reaction is inversely proportional to the radius of the curvature of path and radius is minimum for path depicted in (a)

565 (b)



To reach the height of suspension, h = l $v = \sqrt{2gh} = \sqrt{2gl}$ 

$$\vec{\tau} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 7 & 2 & 1 \\ -3 & 1 & 5 \end{vmatrix}$$
$$= \hat{i}[15 - 1] + \hat{j}[-3 - 35] + k[7 + 9]$$
$$= 14\hat{i} - 38\hat{j} + 16\hat{k}$$

#### 567 (c)

$$x = \alpha t^3$$
 and  $y = \beta t^3$  [Given]  
 $v_x = \frac{dx}{dt} = 3\alpha t^2$  and  $v_y = \frac{dy}{dt} = 3\beta t^2$   
Resultant velocity =  $v = \sqrt{v_x^2 + v_y^2} = 3t^2\sqrt{\alpha^2 + \beta^2}$ 

$$F = mg - \frac{mv^2}{r}$$

#### 569 (a)

Given, 
$$v = 400 \text{ ms}^{-1}, r = 160 \text{ m}, a = ?$$

Centripetal force, 
$$F = \frac{mv^2}{r}$$

$$ma = \frac{mv^2}{r}$$

or 
$$a = \frac{v^2}{r}$$

So, 
$$a = \frac{(400)^2}{160} = \frac{16 \times 10^4}{160}$$
  
=  $10^3 \text{ ms}^{-2} = 1 \text{ kms}^{-2}$ 

#### 570 **(b**)

 $F = \frac{mv^2}{r} \Rightarrow F \propto v^2$ . If v becomes double then F (tendency to overturn) will become four times

#### 571 (c)

$$A_x = 50, \theta = 60^{\circ}$$

Then 
$$\tan \theta = A_y/A_x$$
 or  $A_y = A_x \tan \theta$ 

Or 
$$A_y = 50 \tan 60^\circ = 50 \times \sqrt{3} = 87 \text{ N}$$

#### 572 **(b)**

Here, 
$$T = \frac{2\pi r}{4v} = \frac{\pi r}{2v}$$

Change in velocity is going from A to  $B = v\sqrt{2}$ 

Average acceleration = 
$$\frac{v\sqrt{2}}{\pi r/2v} = \frac{2\sqrt{2}v^2}{\pi r}$$

#### 573 (c)

$$H = \frac{u^2 \sin^2 \theta}{2g} \Rightarrow \frac{H_1}{H_2} = \frac{\sin^2 \theta_1}{\sin^2 \theta_2}$$

$$\frac{\sqrt{3}}{1} = \frac{\sin \theta_1}{\sin \theta_2} \text{ So, } \frac{\cos \theta_1}{\cos \theta_2} = \frac{1}{\sqrt{3}}$$

$$\frac{R_1}{R_2} = \frac{(2u)^2 \sin 2\theta_1}{u^2 \sin 2\theta_2} = \frac{4 \cdot \sin \theta_1 \cos \theta_1}{\sin \theta_2 \cos \theta_2} = \frac{4}{1}$$

For weightlessness state of a body on equator

$$mg = mR\omega^2$$

or 
$$\omega = \sqrt{\frac{g}{R}} = \sqrt{\frac{10}{6400 \times 100}} = \frac{1}{800} \, \text{rads}^{-1}$$

#### 575 (c

At the lowest point,  $\frac{mv^2}{r} = T_L - mg$  ...(i)

At the highest point,  $\frac{mv^2}{r} = T_H + mg$  ...(ii)

As 
$$\frac{T_{\text{max}}}{T_{\text{min}}} = \frac{T_L}{T_H} = 2$$

$$T_L = 2T_E$$

From Eqs. (i) and (ii),

$$2T_H - mg = T_H + mg$$

$$T_H = 2mg$$

From Eq. (ii), 
$$\frac{mv^2}{r} = 3mg$$
 or  $\frac{v^2}{rg} = 3$ 

#### 576 (c)

$$F = mr\omega^{2}$$

$$= \frac{2}{125} \times \frac{1.25}{2\pi} \times (100\pi)^{2} \quad (\because \omega = 2\pi f)$$

$$= 2 \times 50 \times \pi)$$

#### 577 (b)

Time taken by the bomb to reach the ground is given by

$$h_{OA} = \frac{1}{2}gt_{OB}^2$$

 $= 100\pi N = 314N$ 



we have 
$$t_{OB} = \sqrt{\frac{2h_{OA}}{g}}$$

given, 
$$h_{OA} = 80 \text{m}$$
,  $g = 10 \text{ ms}^{-2}$ 

$$\therefore \quad t_{OB} = \sqrt{\frac{2 \times 80}{10}} \text{ 4s}$$

Horizontal velocity of bomb

$$v = 150 \text{ ms}^{-1}$$

Horizontal distance covered by the bomb

$$AB = vt_{OB}$$

$$= 150 \times 4$$

$$= 600 \, \text{m}$$

Hence, the bomb should be dropped 600 m before the target.

#### 578 (a)

$$\vec{A} \times \vec{B} = (4\hat{i} + 6\hat{j}) \times (2\hat{i} + 3\hat{j})$$



$$= 12(\hat{\imath} \times \hat{\jmath}) + 12(\hat{\jmath} \times \hat{\imath}) = 12(\hat{\imath} \times \hat{\jmath}) - 12(\hat{\imath} \times \hat{\jmath})$$
$$= 0$$

Again, 
$$\vec{A} \cdot \vec{B} = (4\hat{\imath} + 6\hat{\jmath}) \cdot (2\hat{\jmath} + 3\hat{\imath}) = 8 + 18 = 26$$

Again, 
$$\frac{|\vec{A}|}{|\vec{B}|} = \frac{\sqrt{16+36}}{\sqrt{4+9}} \neq \frac{1}{2}$$

Again, 
$$\vec{B} = \frac{1}{2} \vec{A}$$

579 (c)

Let  $\vec{C}$  be a vector perpendicular to  $\vec{A}$  and  $\vec{B}$ 

Then as per question  $k\vec{C} = \vec{A} \times \vec{B}$ 

or 
$$k = \frac{\vec{(A} \times \vec{B})}{\vec{C}}$$
  
=  $\frac{(2\hat{i} + 3\hat{j} + 6\hat{k}) \times (3\hat{i} - 6\hat{j} + 2\hat{k})}{(6\hat{k} + 2\hat{j} - 3\hat{k})}$   
=  $\frac{(42\hat{i} + 14\hat{j} - 21\hat{k})}{(6\hat{i} + 2\hat{j} - 3\hat{k})} = 7$ 

580 (d)

$$V^2 = U^2 - 2g(L - L\cos\theta)$$

$$\frac{5gL}{4} = 5gL - 2gL(1 - \cos\theta)$$



$$5 = 20 - 8 + 8\cos\theta$$

$$\cos \theta = -\frac{7}{8}$$

$$\frac{3\pi}{4} < \theta < \pi$$

581 (a)

Here,

$$v = \sqrt{(8)^2 + (6)^2} = 10$$
 and  $\tan \theta = \frac{6}{8}$ 

 $\therefore$  Hypotenuse, h = 10m

$$\therefore \sin \theta = \frac{6}{10}, \cos \theta = \frac{8}{10}$$

$$R = \frac{2u^2 \sin \theta \cos \theta}{g}$$

$$R = \frac{2 \times 10 \times 10 \times \frac{6}{10} \times \frac{8}{10}}{10}$$

$$R = \frac{96}{10} = 9.6$$
m

582 (d)

At 
$$A$$
,  $v_A = \sqrt{gl}$ 

At 
$$B$$
,  $v_R = \sqrt{5gl}$ 

and at 
$$D, v_D = \sqrt{3gl}$$

Thus, 
$$v_B > v_D > v_A$$

Also, 
$$T = 3 mg(1 + \cos \theta)$$

So, 
$$D$$
,  $\theta = 90^{\circ}$ 

$$T = 3 mg(1 + \theta) = 3 mg$$

583 (d)

$$t = \sqrt{\frac{2 \times 490}{9.8}} = \sqrt{\frac{2 \times 49 \times 100}{98}} = \sqrt{100} \text{ s} = 10 \text{ s}$$

584 (a)

Here, 
$$v = 900 \text{ km h}^{-1}$$

$$= \frac{900 \times 1000}{60 \times 60} \text{ms}^{-1} = 250 \text{ ms}^{-1}$$

Minimum force is at the bottom of the vertical circle

$$F_{\text{max}} = \frac{mv^2}{r} + mg = 5 \text{ mg}$$

$$v^2 = 4 \text{ gr}$$

or 
$$r = \frac{v^2}{4g} = \frac{250 \times 250}{4 \times 980} = 1594 \text{ m}$$

585 (c)

If v velocity acquired at B, then

$$v^2 = 2gh$$

The particle will leave the sphere at B, when

$$\frac{mv^2}{r} \ge mg\cos\theta$$

$$\frac{2gh}{r} = \frac{g(r-h)}{r}$$



Which gives  $h = \frac{r}{2}$ 

586 (a)

$$T = m\omega^2 r \Rightarrow 10 = 0.25 \times \omega^2 \times 0.1 \Rightarrow \omega$$
  
= 20 rad/s

587 (c)

Time taken to cover horizontal distance D with constant horizontal velocity,  $t = D/v_0 \cos \theta$ .

Taking vertical motion for time t, we have

$$h = v_0 \sin \theta \times t - \frac{1}{2} g t^2$$

$$= v_0 \sin \theta \times \frac{D}{v_0 \cos \theta} - \frac{1}{2} g \left( \frac{D}{v_0 \cos \theta} \right)^2$$

$$= D \tan \theta - \frac{1}{2} \frac{gD^2}{v_0^2 \cos^2 \theta}$$

588 (a)

$$(KE)_L - (KE)_H = \frac{1}{2}m(v_L^2 - v_H^2)$$
  
=  $\frac{1}{2}m(5 \text{ gr} - \text{gr}) = 2m\text{gr}$ 

$$= 2 \times 1 \times 10 \times 1 = 20$$
 ]

589 (d)

From figure here  $\vec{A} = \sqrt{3}\hat{i} - \hat{k}$ 



so 
$$\tan i_1 = \frac{\sqrt{3}}{1} = \sqrt{3} = \tan 60^\circ$$

$$i_1 = 60^{\circ}$$

Using snell's law  $\mu_1 \sin i_1 = \mu_2 \sin r$ 

or 
$$\sin r = \frac{\mu_1}{\mu_2} \sin i_1 = \frac{\sqrt{2}}{\sqrt{3}} \sin 60^\circ = \frac{1}{\sqrt{2}} = \sin 45^\circ$$
  
or  $r = 45^\circ$ 

The unit vector in the direction of the refracted ray will be

$$\hat{\mathbf{n}} = 1 \sin 45^{\circ} \hat{\mathbf{i}} - 1 \cos 45^{\circ} \hat{\mathbf{k}} = \frac{1}{\sqrt{2}} (\hat{\mathbf{i}} - \hat{\mathbf{k}})$$



#### 590 (a)

Resultant  $\vec{R} = (\vec{P} + \vec{Q}) + (\vec{P} - \vec{Q}) = 2\vec{P}$ . Thus angle between  $\vec{R}$  and  $\vec{P}$  is 0°.

$$|\vec{P}| = A + B \Rightarrow |\vec{P}|^2 = (A + B)^2$$

$$|\vec{A} + \vec{B}|^2 = (A + B)^2$$
or  $A^2 + B^2 + 2AB \cos\theta = A^2 + B^2 + 2AB$ 
or  $\cos\theta = 1$  or  $\theta = 0^\circ$ 

#### 592 (a)

In 6 turns each of 60°, the cyclist traversed a regular hexagon path having each side 100 m. So, at 7th turn, he will be again at



Starting point

Point B (as shown) which is at distance 100 m from starting point A. Hence, net displacement of cyclist is 100 m.

#### 594 (c)

Angular momentum 
$$L = r \times p = r \times m \times v$$
  
 $v = \frac{L}{mr}$  .... (i)

Now, as centripetal force, 
$$F_c = \frac{mv^2}{r}$$
 .... (ii)

Substituting the value of v from Eq. (i) in Eq. (ii), we get

$$F_c = \frac{m}{r} \left[ \frac{L}{mr} \right]^2 = \frac{L^2}{mr^3}$$

# 595 (b)

Angular speed of minute hand,  $\omega_m = \frac{2\pi}{60\times60}\,\mathrm{rad}\,\mathrm{s}^{-1}$ 

$$\omega_m = \frac{2\pi}{60 \times 60} \operatorname{rad} s^{-1}$$

Angular speed of hour hand,

$$\omega_h = \frac{2\pi}{12 \times 60 \times 60} \,\text{rad s}^{-1}$$

$$\therefore \frac{\omega_m}{\omega_h} = 12$$

# 596 (b)

$$T = mg + \frac{mv^2}{l} = mg + 2mg = 3mg$$

Where 
$$v = \sqrt{2gl}$$
 from  $\frac{1}{2}mv^2 = mgl$ 

# 597 (d)

A coin files off when centrifugal force just exceeds the force of friction ie,

$$mr\omega^2 \ge \mu mg$$

or 
$$\omega \geq \frac{\sqrt{\mu_{\xi}}}{r}$$

Thus  $\omega$  does not depend upon mass and will remain the same

#### 598 (d)

Maximum tension,  $F = mr\omega^2 = mr4\pi^2v^2$  $= 0.1 \times 2 \times 4 \times \pi^2 \times (200/60)^2 = 87.64 \text{ N}$ 

#### 599 (a)

$$2\pi r = 34.3 \Rightarrow r = \frac{34.3}{2\pi}$$
 and  $v = \frac{2\pi r}{T} = \frac{2\pi r}{\sqrt{22}}$ 

Angle of banking  $\theta = \tan^{-1} \left( \frac{v^2}{rg} \right) = 45^\circ$ 

#### 600 (c)

Here 
$$u_y = u \cos \theta = 15 \cos \theta$$

$$u_x = u \sin \theta = 15 \sin \theta$$



Time of flight of the ball is

$$T = \frac{2u_y}{g} = \frac{2 \times 15 \cos \theta}{10} = 3 \cos \theta$$
 ...(i)

The boy will catch the ball in time T, displacement of the ball in horizontal direction should also be

$$0 = u_x T - \frac{1}{2} a_x T^2$$

or 
$$T = \frac{2u_x}{a_x} = \frac{2(15\sin\theta)}{3} = 10\sin\theta$$
 ...(ii)

From Eqs. (i) and (ii),  $3\cos\theta = 10\sin\theta$ 

or 
$$\tan \theta = \frac{3}{10} = 0.3$$
 or  $\theta = \tan^{-1}(0.3)$ 

601 (b)



$$\vec{\mathbf{v}} = 6\hat{\mathbf{i}} - 8\hat{\mathbf{j}}$$

Comparing with

 $\vec{\mathbf{v}} = v_x \hat{\mathbf{i}} = v_y = \hat{\mathbf{j}}$ , we get



and 
$$u_x = 6 \text{ ms}^{-2}$$

Also, 
$$u^2 = v_x^2 + v_y^2$$

or 
$$v = 10 \text{ms}^{-1}$$

$$\sin \theta = \frac{8}{10}$$
 and  $\cos \theta = \frac{6}{10}$ 

$$\sin \theta = \frac{8}{10} \text{ and } \cos \theta = \frac{6}{10}$$

$$R = \frac{v^2 \sin 2\theta}{g} = \frac{2v^2 \sin \theta \cos \theta}{g}$$

$$R = 2 \times 10 \times 10 \times \frac{8}{10} \times \frac{6}{10} \times \frac{1}{10} \text{ m} = 9.6 \text{ m}$$

602 (b)

For complementary angles range will be equal

$$h_{\text{max.}} = \frac{v^2 \sin^2 \theta}{2g}$$

In the given problem,  $h_{\text{max}}$  is same in both the

$$v_1^2 \sin^2 60^\circ = v_2^2 \sin^2 30^\circ$$

or 
$$\frac{v_1}{v_2} = \frac{\sin 30^\circ}{\sin 60^\circ} = \frac{1}{2} \times \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

604 (c)

Here, 
$$r = 25 \text{m}, v = 5 \text{ ms}^{-1}, \text{m} = 500 \text{ kg}$$

$$a_t = 1 \text{ ms}^{-2},$$

$$a_r = \frac{v^2}{r} = \frac{5 \times 5}{25} = 1 \text{ ms}^{-2}$$

$$a_{\text{net}} = \sqrt{a_r^2 + a_t^2} = \sqrt{1^2 + 1^2} = \sqrt{2} \text{ ms}^{-2}$$

$$F = ma_{\text{net}} = 500\sqrt{2} \text{ N}$$

605 (d)

Velocity of the bob at the point A

$$v=\sqrt{5gL}~....(\mathrm{i})$$

$$\left(\frac{v}{2}\right)^2 = v^2 - 2gh....(ii)$$

$$h = L(1 - \cos \theta) ... (iii)$$

Solving Eqs. (i), (ii) and (iii), we get

$$\cos \theta = -\frac{7}{8}$$

or 
$$\theta = \cos^{-1}\left(-\frac{7}{8}\right) = 151^{\circ}$$

606 (d)

Equating horizontal components, we get

$$V\cos(90^{\circ}-\theta)=v\cos\theta$$

or 
$$V \sin \theta = v \cos \theta$$
 or  $V = v \cot \theta$ 



607 (c)

Centripetal acceleration =  $4\pi^2 n^2 r = 4\pi^2 \times (1)^2 \times 10^2 \times 1$  $0.4 = 1.6\pi^2$ 

608 **(b)** 

Here, 
$$A_1 = A_2 = 1$$

and 
$$A_1^2 + A_2^2 + 2A_1A_2\cos\theta = (\sqrt{3})^2 = 3$$

or 
$$1+1+2\times 1\times 1\times \cos\theta = 3$$
 or  $\cos\theta = \frac{1}{2}$ 

Now, 
$$(\vec{A}_1 - \vec{A}_2) \cdot (2\vec{A}_1 + \vec{A}_2)$$

$$=2A_1^2 - A_2^2 - A_1A_2\cos\theta$$

$$= 2 \times 1^2 - 1^2 - 1 \times 1 \times \frac{1}{2} = \frac{1}{2}$$

609 (b)

At the highest point, velocity along y-axis is zero.

Therefore, change in linear momentum  $= m(u \sin \alpha - 0) = mu \sin \alpha$ 

610 (d)



$$\vec{a} = -\frac{v^2}{R}\cos\theta\hat{\imath} - \frac{v^2}{R}\sin\theta\hat{\jmath}$$

611 (d)

$$\mathbf{L} = m(\mathbf{r} \times \mathbf{v})$$

Direction of  $(\mathbf{r} \times \mathbf{v})$ , hence the direction of angular momentum remains the same.

612 (c)

Velocity at the lowest point

$$v = \sqrt{2gl}$$

At the lowest point, the tension in the string

$$T = mg + \frac{mv^2}{l}$$
$$= mg + \frac{m}{l}(2gl) = 3 mg$$

613 (a)

$$v = \sqrt{\mu rg} = \sqrt{0.4 \times 30 \times 9.8} = 10.84 \, \text{m/s}$$

$$v_x = 8t - 2$$
or 
$$\frac{dx}{dt} = 8t - 2$$

or 
$$\frac{dx}{dt} = 8t - 2$$

or 
$$\int_{14}^{x} dx = \int_{2}^{t} (8t - 2)dt$$

or 
$$\int_{14}^{x} dx = \int_{2}^{t} (8t - 2)dt$$
  
or  $x - 14 = [4t^{2} - 2t]_{2}^{t} = 4t^{2} - 2t - 12$ 

or 
$$x = 4t^2 - 2t + 2$$
 ...(i)

Further,  $v_y = 2$ 

or 
$$\frac{dy}{dt} = 2$$

$$\therefore \int_{4}^{ut} dy = \int_{2}^{t} 2dt$$

or 
$$y - 4 = [2t]_2^t = 2t - 4$$

or 
$$y = 2t$$

or 
$$t = \frac{y}{2}$$
 ...(ii)

Substituting value of t from Eq. (ii) in Eq. (i), we

$$x = y^2 - y + 2$$

615 (a)

Here, centripetal force,

$$F = \frac{mv^2}{l}$$

But the angle between force and displacement is 90° because the direction of centripetal force is always towards the center and direction of displacement is always tangential.

Then work done

$$W = \mathbf{F} \cdot \mathbf{s} = Fs \cos 90^{\circ}$$

$$\Rightarrow W = 0$$



616 (a)



Initial kinetic energy at the point of projection O

$$K = \frac{1}{2}mu^2$$

Where, m = mass of the body

u = initial velocity of the projection

At the highest point (i.e. at maximum height H)

Velocity is  $v = u \cos \beta$ ,

Where  $\beta$  is the angle of projection

: Kinetic energy at the highest point is

$$K'' = \frac{1}{2}mv^2 \Rightarrow K'' = \frac{1}{2}m(u\cos\beta)^2$$
$$= \frac{1}{2}mu^2\cos^2\beta$$

According to given problem,  $K'' = \frac{3}{4}K$ 

$$\frac{1}{2}mu^2\cos^2\beta = \frac{3}{4}\left(\frac{1}{2}mu^2\right) \Rightarrow \cos^2\beta = \frac{3}{4}$$
$$\cos\beta = \frac{\sqrt{3}}{2}\text{ or }\beta = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = 30^{\circ}$$

617 (c)

 $F = \frac{mv^2}{r}$ . When v is doubled, F becomes 4 times

: Tendency to overturn is quadrupted

618 (c)

For angle 
$$(45^{\circ} - \theta)$$
,  $R = \frac{u^2 \sin(90^{\circ} - 2\theta)}{g} = \frac{u^2 \cos 2\theta}{g}$   
For angle  $(45^{\circ} + \theta)$ ,  $R = \frac{u^2 \sin(90^{\circ} + 2\theta)}{g} = \frac{u^2 \cos 2\theta}{g}$ 

For angle 
$$(45^{\circ} + \theta)$$
,  $R = \frac{u^2 \sin(90^{\circ} + 2\theta)}{g} = \frac{u^2 \cos 2\theta}{g}$ 

620 (b)

Increment in angular velocity 
$$\omega = 2\pi(n_2 - n_1)$$

$$\omega = 2\pi(1200 - 600) \frac{rad}{min} = \frac{2\pi \times 600}{60} \frac{rad}{s}$$

$$=20\pi \frac{rad}{s}$$

621 (d)

Maximum tension = 
$$\frac{mv^2}{r}$$
 = 16N

$$\Rightarrow \frac{16 \times v^2}{144} = 16 \Rightarrow v = 12 \ m/s$$

622 (a)

Distance covered in n revoulation= $n2\pi r = n\pi D$  $\Rightarrow$  2000 $\pi D = 9500$ 

$$\Rightarrow D = \frac{9500}{2000 \times \pi} = 1.5 \text{m}$$

623 (b)

$$h = 145 - 22.5 = 122.5 \text{ m}$$

Now, 
$$40 = v \sqrt{\frac{2 \times 122.5}{9.8}}$$

or 
$$40 = v \times 5$$
 or  $v = 8 \text{ ms}^{-1}$ 

624 (a)

Range of projectile,

$$R = \frac{2u^2 \sin^2 \theta}{g} ...(i)$$

Height, 
$$H = \frac{u^2 \sin^2 \theta}{2\pi}$$
 ...(ii

Height, 
$$H = \frac{u^2 \sin^2 \theta}{2g}$$
 ...(ii)
$$H_1 = \frac{u^2 \sin^2(90^\circ - \theta)}{2g} = \frac{u^2 \cos^2 \theta}{g}$$
 ...(iii)
Then  $HH_1 = \frac{u^2 \sin^2 \theta \times u^2 \cos^2 \theta}{2g \times 2g}$  ...(iv)

Then 
$$HH_1 = \frac{u^2 \sin^2 \theta \times u^2 \cos^2 \theta}{2g \times 2g}$$
 ...(iv)

From Eq. (i) we g

$$R^{2} = \frac{4u^{2} \sin^{2} \theta \times u^{2} \cos^{2} \theta \times 4}{2g \times 2g}$$

$$R = \sqrt{16HH_1}$$
 [from Eq. (iv)]

$$\therefore R = 4\sqrt{HH_1}$$

$$120 \ rev/\text{min} = 120 \times \frac{2\pi}{60} \ rad/\sec = 4\pi \ rad/\sec$$

626 (c)



 $R = 4H \cot \theta$ , if  $R = 4H \text{ then } \cot \theta = 1 \Rightarrow \theta = 45^{\circ}$ 

 $\overrightarrow{F_1} = F_1 \hat{j}; \overrightarrow{F_1} \times \overrightarrow{F_2}$  is equal to zero only I angle between  $\overrightarrow{F_1}$  and  $\overrightarrow{F_2}$  is either 0° or 180°. So  $\overrightarrow{F_2}$  will

628 (c)

Maximum height, 
$$H = \frac{u^2 \sin^2 \theta}{2g}$$

Time of flight,  $T = \frac{2u\sin\theta}{\sigma}$ 

$$\therefore \frac{H}{T^2} = \frac{u^2 \sin^2 \theta / 2g}{4u^2 \sin^2 \theta / g^2} = \frac{g}{8} = \frac{10}{8} = \frac{5}{4}$$

629 (c)

$$x + y = 16$$
, Also  $y^2 = 8^2 + x^2$ 

or 
$$y^2 = 64 + (16 - y)^2$$

$$[\because x = 16 - y]$$

or 
$$y^2 = 64 + 256 + y^2 - 32y$$

or 
$$32y = 320$$
 or  $y = 10N$ 

$$x + 10 = 16$$
 or  $x = 6N$ 



630 (c)

For 
$$\theta = 45^{\circ}$$

$$H_{\text{max}} = \frac{u^2 \sin^2 45^\circ}{2g} = \frac{u^2}{4g} \qquad \left[ \because \sin 45^\circ = \frac{1}{\sqrt{2}} \right]$$

$$R = \frac{u^2 \sin 90^\circ}{g} = \frac{u^2}{g}; \therefore \frac{R}{H} = \frac{u^2}{g} \times \frac{4g}{u^2} = 4 \Rightarrow R$$
$$= 4H$$

631 (d)

Here, 
$$n = 2$$
 rps,  $r = 5$  cm  $= 0.05$  m,  $\mu = ?$ 

As 
$$\frac{mv^2}{r} = F = \mu R = \mu mg$$
  
 $\mu = \frac{v^2}{rg} = \frac{(r2\pi n)^2}{rg} = \frac{4\pi^2 n^2 r}{g}$ 

$$rg rg rg g g = 4 \times \frac{22}{7} \times \frac{22}{7} \times \frac{2^2 \times 0.05}{9.8} = 0.8$$

632 (a)

$$v_{\min} = \sqrt{5 gr} = 17.7 \, m/\text{sec}$$

633 (c)

$$\cos\theta = \vec{A} \cdot \vec{B}/AB$$

634 (a)

$$\tan \theta = \frac{v^2}{rg} = \frac{30 \times 30}{900 \times 9.8} = 0.102$$

$$\theta = 6^{\circ}$$

635 (d)

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 396.9}{9.8}} \approx 9 \sec \text{ and } u = 720 \text{km/}$$

$$hr = 200 \, m/s$$

$$\therefore R = u \times t = 200 \times 9 = 1800 m$$

Suppose  $t_0$  be the time to reach maximum height in the absence of air resistance, then from the

$$t_0 = \frac{u \sin \alpha}{a} \qquad ...(i)$$

When a is retardation caused by air resistance, then total retardation will be g + a

$$t_1 = \frac{u \sin \alpha}{g + a} = \frac{u \sin \alpha}{g + \left(\frac{1}{10}\right)g} = \frac{10u \sin \alpha}{11g} \dots (ii)$$

Now from equations (i) and (ii), we have

: Time will decrease by 9%

637 (b)

$$v = \sqrt{3gr}$$
 and  $a = \frac{v^2}{r} = \frac{3gr}{r} = 3g$ 

638 (a)

Time of flight, 
$$T = \frac{2u\sin\theta}{g}$$

$$\therefore dT = \frac{2du\sin\theta}{g}$$

Now, 
$$\therefore \frac{dT}{T} = \frac{du}{u} = \frac{1}{20}$$

$$\therefore \% \text{ increase in } T = \frac{dT}{T} \times 100$$

$$=\frac{1}{20}\times 100=5\%$$

639 (c)

$$t = \sqrt{\frac{2 \times 8 \times 10^3}{10}} = 40 \text{ s}$$

$$x = vt = 200 \times 40 = 8000$$
m

640 (d)

Maximum height and time of flight depend on the vertical component of initial velocity

$$H_1 = H_2 \Rightarrow u_{y_1} = u_{y_2}$$

Here 
$$T_1 = T_2$$

Range 
$$R = \frac{u^2 \sin 2\theta}{g} = \frac{2(u \sin \theta)(u \cos \theta)}{g}$$

$$=\frac{2u_xu_y}{g}$$

$$R_2 > R_1 : u_{x_2} > u_{x_1}$$
 or  $u_2 > u_1$ 

Centripetal force, 
$$F = \frac{mv^2}{r}$$

$$v = \sqrt{\left(\frac{rF}{m}\right)} = \sqrt{\frac{0.5 \times 10 \times 1000}{100}}$$

$$=\sqrt{50}$$
ms⁻¹ = 7.07ms⁻¹

642 (d)

The maximum speed without skidding is







$$v = \sqrt{\mu rg}$$

$$\therefore \quad \frac{v_2}{v_1} = \sqrt{\frac{\mu_2}{\mu_1}} = \sqrt{\frac{\mu/2}{\mu}} = \frac{1}{\sqrt{2}}$$

$$v_2 = \frac{v_1}{\sqrt{2}} = 5\sqrt{2} \text{ ms}^{-1}$$

643 (c)

Apply right handed screw rule for the direction of  $(\vec{A} \times \vec{B})$ 

644 (b)

Components of velocity of ball relative to lift are



$$u_x = 4\cos 30^\circ = 2\sqrt{3} \text{ms}^{-1}$$

and 
$$u_y = 4 \sin 30^\circ = 2 \text{ms}^{-1}$$

and acceleration of ball relative to lift is  $12 \text{ ms}^{-2}$  in negative *y*-direction or vertically downwards. Hence, time of flight

$$T = \frac{2u_y}{12} = \frac{u_y}{6} = \frac{2}{6} = \frac{1}{3}$$
s

645 (c)

Horizontal displacement of the bomb AB =Horizontal velocity × time available

AB = 
$$u \times \sqrt{\frac{2h}{g}} = 600 \times \frac{5}{18} \times \sqrt{\frac{2 \times 1960}{9.8}}$$
  
= 3.33 km

646 (b)

Angular velocity about A,  $\omega_1 = v/2r$ 



Angular velocity about,  $\omega_1 = v/2r$ 

$$\omega_1/\omega_2 = (v/2r)/(v/r) = 1/2$$

647 **(b)** 

$$v = \sqrt{gr} = \sqrt{10 \times 40} = 20ms^{-1}$$

648 (d)

Electrostatic force provides necessary centripetal force for circular motion of electron.

649 (a)

Kinetic energy

$$E = \frac{1}{2}mv^{2}$$
or 
$$\frac{1}{2}mr\frac{v^{2}}{r} = E$$
or 
$$\frac{1}{2}mra = E$$

or 
$$a = \frac{2E}{mr}$$

650 (a)

Acceleration =  $\omega^2 r = \frac{v^2}{r} = \omega v = \frac{2\pi}{r} v$ 

651 **(b)** 

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 490}{9.8}} = \sqrt{100} = 10 \text{ s}$$

$$x = vt = \left(60 \times \frac{5}{18}\right) \text{ms}^{-1} \times 10 \text{ s} = \frac{500}{3} \text{m}$$

652 **(b)** 

Change in momentum is the product of force and time

$$\Delta p = mg \times \frac{2\sin\theta}{g}$$

$$= 2mv\sin\theta = 2mv\sin45^\circ = \frac{2mv}{\sqrt{2}} = \sqrt{2}mv$$

653 **(c)** 

Acceleration of insect with respect to car  $\vec{a}_{sc}$  is a in the direction shown in figure. Absolute acceleration of insect is



$$\vec{\mathbf{a}}_s = \vec{\mathbf{a}}_{sc} + \vec{\mathbf{a}}_c$$

Component of  $\vec{\mathbf{a}}_s$  along horizontal is  $a_0$  – a  $\cos \theta$  and perpendicular to screen is  $a_0 \sin \theta$ 

654 (c)

We know that range of projectile is same for complementary angles ie, for  $\theta$  and  $(90^{\circ} - \theta)$ .

$$T_1 = \frac{2u\sin\theta}{g}$$

$$T_2 = \frac{2u\sin(90^\circ - \theta)}{g} = \frac{2u\cos\theta}{g}$$
and 
$$R = \frac{u^2\sin\theta}{g}$$

Therefore, 
$$T_1 T_2 = \frac{2u \sin \theta}{g} \times \frac{2u \cos \theta}{g}$$

$$= \frac{2u^2 (2 \sin \theta \cos \theta)}{g^2}$$

$$=\frac{2u^2(2\sin\theta)}{g^2}=\frac{2R}{g}$$

 $T_1T_2 \propto R$ 

655 (b)

When a body is projected at an angle  $\theta$  with the horizontal with initial velocity u, then the horizontal range R of projectile is



$$R = \frac{u^2 \sin 2\theta}{g}$$

Clearly, for maximum horizontal range  $\sin 2\theta = 1$  or  $2\theta = 90^\circ$  or  $\theta = 45^\circ$ . Hence, in order to achieve maximum range, the body should be projected at  $45^\circ$ .

In this case

$$R_{\max} = \frac{u^2}{g}$$

Hence, range of A and C are less than that of B.

#### 656 (d)

During time of flight vertical displacement becomes zero

$$i.e., y = 0$$

$$KT(1 - \alpha T) = 0 \Rightarrow T = \frac{1}{\alpha}$$

 $\therefore$  Time taken by particle to attain max, height t = T/2 =

$$\frac{1}{2\alpha}$$
;  $\therefore Y_{\text{max}} = K \cdot \frac{1}{2\alpha} \left( 1 - \alpha \cdot \frac{1}{2\alpha} \right) \Rightarrow = \frac{K}{4\alpha}$ 

# 657 (c

When a particle is thrown in vertical downward direction with velocity  $\boldsymbol{u}$  then final velocity at the ground level

$$\uparrow \qquad \downarrow u \\
\downarrow \qquad \qquad \downarrow v = \sqrt{u^2 + 2gh}$$

$$v^2 = u^2 + 2gh : v = \sqrt{u^2 + 2gh}$$

Another particle is thrown horizontally with same vertically then at the surface of earth



Horizontal component of velocity  $v_x = u$ 

 $\therefore$  Resultant velocity,  $v = \sqrt{u^2 + 2gh}$ 

For both the particle final velocities when they reach the earth's surface are equal

# 659 (a)

We know that the range of projectile projected with velocity u, making an angle  $\theta$  with the horizontal direction up the inclined plane, whose inclination with the horizontal direction is  $\theta_0$ , is

$$R = \frac{u^2}{\mathrm{gcos}^2\theta_0} [\sin(2\theta - \theta_0) - \sin\theta_0]$$

Here, 
$$u = v$$
,  $\theta = (90^{\circ} + \theta)$ ,  $\theta_0 = \theta$ 

$$\therefore R = \frac{v^2}{g\cos^2\theta_0} \{\sin[2(90^\circ + \theta)] - \theta\} - \sin\theta\}$$

$$= \frac{v^2}{g\cos^2\theta_0} [\sin(180^\circ + \theta) - \sin\theta]$$

$$= -\frac{v^2}{g\cos^2\theta_0} 2\sin\theta = -\frac{2u^2}{g}\tan\theta \sec\theta$$

$$= \frac{2v^2}{g}\tan\theta \text{ (in magnitude)}$$

#### 660 **(b)**

$$60^2 = 30^2 + v^2$$
 or  $v^2 = 90 \times 30$   
or  $v = 30\sqrt{3}$  km h⁻¹.

#### 661 (b)

$$T = mg + \frac{mv^2}{l} = mg + \frac{m}{l} [2gl(1 - \cos \theta)]$$
  
=  $mg + 2mg(1 - \cos 60^\circ) = 2mg = 2 \times 0.1 \times 9.8$   
=  $1.96N$ 

#### 662 (d)

If the three vectors are coplanar then their scalar triple product is zero. So  $(\vec{A} \times \vec{C}) \cdot \vec{B} = 0$  or  $[(2\hat{i} + 3\hat{j} - 2\hat{k}) \times (-\hat{i} + 2\hat{j} + 3\hat{k})] \cdot [5\hat{i} + a\hat{j} + \hat{k}] = 0$  or  $[13\hat{i} - 4\hat{j} + 7\hat{k}] \cdot [5\hat{i} + a\hat{j} + 5\hat{k}] = 0$  or 65 - 4a + 7 = 0 or a = 18

#### 663 (d)

Centripetal acceleration,  $a = \omega^2 r$  $= 4\pi^2 n^2 r = 4\pi^2 \left(\frac{1}{2}\right)^2 \times 100$ 

#### 664 (b)

Centripetal acceleration =  $r4\pi^2v^2$ 

#### 665 (c)

Minimum angular velocity  $\omega_{\min} = \sqrt{g/R}$ 

$$\therefore T_{\text{max}} = \frac{2\pi}{\omega_{\text{min}}} = 2\pi \sqrt{\frac{R}{g}} = 2\pi \sqrt{\frac{2}{10}} \cong 3s$$

#### 666 (d)

Given, 
$$s = t^3 + 5$$
  
Speed,  $v = \frac{ds}{dt} = 3t^2$ 

and rate of change of speed,  $a_t = \frac{dv}{dt} = 6t$ 

- $\therefore$  Tangential acceleration at t = 2 s,
- $a_t = 6 \times 2 = 12 \text{ ms}^{-2}$

and at t = 2s,  $v = 3(2)^2 = 12$ ms⁻¹

- ∴ Centripetal acceleration,  $a_c = \frac{v^2}{R} = \frac{144}{20} \text{ ms}^{-2}$
- $\therefore$  Net acceleration =  $a_t^2 + a_i^2 \approx 14 \text{ms}^{-2}$

#### 667 (d)

As maximum value of T = mg from  $2T \cos\theta = mg$ .



$$2\cos\theta = 1, \cos\theta = \frac{1}{2}, \theta = 60^{\circ}$$

Angle between two arms  $=2\theta = 120^{\circ}$ 

668 (c)

The pilot will see the ball falling in straight line because the reference frame is moving with the same horizontal velocity but the observer at rest will see the ball falling in parabolic path

669 (d)

In the given condition friction provides the required centripetal force and that is constant. *i. e.*  $m\omega^2 r = \text{constant}$ 

$$\Rightarrow r \propto \frac{1}{\omega^2} :: r_2 = r_1 \left(\frac{\omega_1}{\omega_2}\right)^2 = 9 \left(\frac{1}{3}\right)^2 = 1 \ cm$$

670 **(b)** 

New kinetic energy  $E' = E = \cos^2 \theta$ =  $E \cos^2 (45^\circ)$  $\frac{E}{2}$ 

671 (b)

$$\tan \theta = \frac{v^2}{rq} = \frac{400}{20 \times 9.8} \Rightarrow \theta = 63.9^\circ$$

672 (d)

Since the maximum tension  $T_B$  in the string moving in the vertical circle is at the bottom and minimum tension  $T_T$  is at the top

$$T_{B} = \frac{mv_{B}^{2}}{L} + mg \text{ and } T_{T} = \frac{mv_{T}^{2}}{L} - mg$$

$$\frac{T_{B}}{T_{T}} = \frac{mv_{B}^{2} + mg}{\frac{L}{L} - mg} = \frac{4}{1} \text{ or } \frac{v_{B}^{2} + gL}{v_{T}^{2} - gL} = \frac{4}{1}$$

$$\text{Or } v_{B}^{2} + gL = 4v_{T}^{2} - 4gL \text{ but } v_{B}^{2} = v_{T}^{2} + 4gL$$

$$\therefore v_{T}^{2} + 4gL + gL = 4v_{T}^{2} - 4gL \Rightarrow 3v_{T}^{2} = 9gL$$

$$\therefore v_{T}^{2} = 3 \times g \times L = 3 \times 10 \times \frac{10}{3} \text{ or } v_{T}$$

$$= 10 \text{ m/sec}$$

$$v = \sqrt{gr} = \sqrt{9.8 \times 5} = 7 \text{ ms}^{-1}$$

674 (c)

$$\vec{P} + \vec{Q} = 5\hat{\imath} - 4\hat{\jmath} + 3\hat{k}$$

$$\cos \alpha = \frac{5}{\sqrt{5^2 + 4^2 + 3^2}} = \frac{5}{\sqrt{50}}$$
or  $\alpha = \cos^{-1}\left(\frac{5}{\sqrt{50}}\right)$ 

675 (b)

Centripetal force is given by

$$F = \frac{mv^2}{R}$$

$$\Rightarrow F \propto \frac{1}{R}$$

$$\text{or } \frac{F_2}{F_1} = \frac{R_1}{R_2}$$

Given, 
$$r_2 = 2r_1$$

$$\therefore \frac{F_2}{F_1} = \frac{R_1}{2R_1} = \frac{1}{2}$$

or 
$$F_2 = \frac{F_1}{2}$$

therefore, centripetal force will become half.

676 (b)

Maximum height, 
$$H = \frac{u^2 \sin^2 \theta}{2\sigma}$$

$$\frac{dH}{du} = \frac{2u^2 \sin^2 \theta}{2g} \text{ or } dH = \frac{u \sin^2 \theta}{g} du$$

$$dH = \frac{u \sin^2 \theta}{g} du$$

H u

So, 
$$\frac{dH}{H} = \frac{10}{100} = \frac{1}{10} = \frac{2du}{u}$$

Now horizontal range,  $dR = \frac{2u}{g} \sin 2\theta du$ 

or 
$$\frac{dR}{R} = \frac{2du}{u} = \frac{1}{10}$$

$$\therefore$$
 % increase in  $R = \frac{dR}{R} \times 100$ 

$$=\frac{1}{10}\times 100 = 10\%$$

677 (a)

$$m4\pi^2 n^2 r = 4 \times 10^{-13} \Rightarrow n$$
  
= 0.08 \times 10^8 cycles/sec.

678 (c)

$$H_{\max} = \frac{u^2 \sin^2 \theta}{2a}$$

According to problem  $\frac{u_1^2 \sin^2 45^\circ}{2g} = \frac{u_2^2 \sin^2 60^\circ}{2g}$ 

$$\Rightarrow \frac{u_1^2}{u_2^2} = \frac{\sin^2 60^\circ}{\sin^2 30^\circ} \Rightarrow \frac{u_1}{u_2} = \frac{\sqrt{3}/2}{1/\sqrt{2}} = \sqrt{\frac{3}{2}}$$

679 (d)

Acceleration 
$$a = \alpha x^2 \Rightarrow \frac{dV}{dt} = \alpha x^2$$
  

$$\Rightarrow dV = \alpha x^2 dt \Rightarrow dV = \alpha x^2 dx \frac{dt}{dx}$$

$$\Rightarrow \int_0^{v_0} V dV = \int_0^x \alpha x^2 dx \Rightarrow \frac{V_0^2}{2} = \frac{\alpha \cdot x^3}{3}$$

$$\Rightarrow x = \left[\frac{3V_0^2}{2\alpha}\right]^{-1/3}$$

680 (c)

$$q(\vec{v} \times \vec{B}) = \frac{mv^2}{r}$$
or acceleration =  $\frac{v^2}{r} = \frac{q}{m}(\vec{v} \times \vec{B})$ 
=  $9.6 \times 10^7 \times [(3\hat{i} + 2\hat{j})10^5 \times (2\hat{i} + 3\hat{k})]$ 
=  $9.6 \times 10^{12} \times [6\hat{i} - 9\hat{j} - 4\hat{k}] \text{ms}^{-2}$ 

681 (d)

Standard equation of projectile motion





$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$

Comparing with given equation

$$A = \tan \theta$$
 and  $B = \frac{g}{2u^2 \cos^2 \theta}$ 

$$So\frac{A}{B} = \frac{\tan\theta \times 2u^2\cos^2\theta}{g} = 40$$

[As 
$$\theta = 45^{\circ}$$
,  $u = 20 \text{ m/s}$ ,  $g = 10 \text{m/s}^2$ ]

682 (c)

From figure in equilibrium position

$$T_1 \sin 30^\circ = T_2 \sin 60^\circ$$

or 
$$T_1 \times \frac{1}{2} = T_2 \times \frac{\sqrt{3}}{2}$$

or 
$$\frac{T_1}{T_2} = \sqrt{3}$$



683 (b)

From conservation of mechanical energy

$$K = K_i - mgy$$
 ....(i)

(Here  $K_i$ = initial kinetic energy = constant)

ie, K-y graph is straight line. It first decreases linearly becomes minimum at highest point and then becomes equal to  $K_i$  in the similar manner.

Therefore, K - y graph should be as shown below



Eq. (i) we can written as

$$K = K_i - mg\left(u_y t - \frac{1}{2}gt^2\right)$$

ie, K-y graph is a parabola. Kinetic energy first decreases and then increases.

Eq. (i) can also written as

$$K = K_i - mg\left(x\tan\theta - \frac{gx^2}{2u_x^2}\right)$$

Again K - x graph is a parabola

Further,  $p^2 = 2Km ie$ ,  $p^2 = 2Km ie$ ,  $p^2 = K$  or K versus  $p^2$ 

Graph is a straight line passing through origin

684 (c)

When wheel rolls half a revolution, the point (*P*) of the wheel which is in contact with the ground initially, moves at the top of the wheel as shown.



Horizontal displacement of point P,

$$y = 2r$$

Net displacement = 
$$\sqrt{x^2 + y^2}$$

$$=\sqrt{(\pi r)^2+(2r)^2}$$

$$= r\sqrt{\pi^2 + 4}$$

$$=\sqrt{\pi^2+4}$$

685 (a)

Max. tension that string can bear = 3.7 kgwt = 37 N

Tension at lowest point of vertical loop =  $mg + m\omega^2 r$ 

$$= 0.5 \times 10 + 0.5 \times \omega^2 \times 4 = 5 + 2\omega^2$$

$$\therefore 37 = 5 + 2\omega^2 \Rightarrow \omega = 4 \text{ rad/s}$$

686 (c)

$$F = \sqrt{\left(\frac{P}{2}\right)^2 + \left(\frac{P}{2}\right)^2} = \sqrt{2} \cdot \frac{P}{2} = \frac{P}{\sqrt{2}}$$

687 (a)

Balancing the force, we get

$$Mg - N = M\frac{v^2}{R}$$

For weightlessness, N = 0

$$\therefore \frac{Mv^2}{R} = Mg$$

or 
$$v = \sqrt{Rg}$$

Putting the values,  $R = 20 \text{ m}, g = 10.0 \text{ ms}^{-2}$ 

So, 
$$v = \sqrt{20 \times 10.0} = 14.14 \text{ ms}^{-1}$$

Thus, the speed of the car at the top of the hill is between  $14~{\rm ms^{-1}}$  and  $10~{\rm ms^{-1}}$ 



688 (b)

Required numerical value is

$$\sqrt{3^2+4^2+5^2}$$
, ie,  $\sqrt{50}$  or  $5\sqrt{2}$ 

689 (c)

Tension in the string

$$T = mv^2/r = (r\omega)^2 = mr\omega^2$$



If 
$$r_1 = r/2$$
 and  $\omega_1 = 2\omega$ , then 
$$T_1 = m(r/2)(2\omega)^2 = 2mr\omega^2 = 2T$$

690 (a)

The centre of gravity of other tube will be at length L/2

So radius r = L/2

Centripetal force, =  $M r \omega^2 = M(L/2)\omega^2 = ML\omega^2/2$ 

691 (a)

Motion is along the time; Y = X + 4;

Differentiating it wrt time, we have

$$\frac{dY}{dt} = \frac{dX}{dt} ie, v_Y = v_X$$

As, 
$$v = (v_X^2 + v_Y^2)^{1/2} = 3\sqrt{2}$$
 and  $v_X = v_Y$ ,

therefore,

$$(v_X^2 + v_X^2)^{1/2} = 3\sqrt{2} \text{ or } v_X = 3 = v_Y$$

When X = 0, from the given equation,

$$Y = 0 + 4 = 4$$

Magnitude o angular momentum of particle

$$= m v r = m v y \quad (\because y = r)$$

$$= 5 \times 3 \times 4 = 60$$
 units

692 (b)

$$y = bx^2$$

Differentiating w.r.t. t, on both sides, we get

$$\frac{dy}{dt} = b2x \frac{dx}{dt} \Rightarrow v_y = 2bxv_x$$

Again, differentiating w.r.t. t, on both sides, we get

$$\frac{dv_y}{dt} = 2bv_x \frac{dx}{dt} + 2bx \frac{dv_x}{dt} = 2bv_x^2 + 0$$

 $\left[\frac{dv_\chi}{dt} = 0\right]$ , because the particle has constant

acceleration along y-direction]

As per question

$$\frac{dv_y}{dt} = a = 2bv_x^2; \ v_x^2 = \frac{a}{2b} \Rightarrow v_x = \sqrt{\frac{a}{2b}}$$

693 (c)

Area = 
$$|\vec{A}| \times |\vec{B}| = |(4\hat{i} + 3\hat{j}) \times (2\hat{i} + 4\hat{j})| = |10\hat{k}| = 10$$
 units

694 (b)

As 
$$H = \frac{u^2 \sin^2 \theta}{2g}$$
 :  $\frac{H_1}{H_2} = \frac{\sin^2 \theta_1}{\sin \theta_2} = \frac{\sin^2 30^\circ}{\sin^2 60} = \frac{1/4}{3/4} = \frac{1}{3}$ 

696 (c)

The vertical component of velocity of the balls will be same if they stay in air for the same period of time. Hence vertical height attained will be same

697 (a)

Given, 
$$5 = \frac{2u\sin\theta}{2g}$$
 or  $\frac{u\sin\theta}{g} = \frac{5}{2}$ 

Maximum height = 
$$\frac{u^2 \sin \theta}{2g} = \frac{g}{2} \left( \frac{u^2 \sin^2 \theta}{g^2} \right)$$

$$=\frac{g}{2} \times \left(\frac{5}{2}\right)^2 = \frac{10}{2} \times \frac{25}{4} = 31.25 \text{ m}$$

698 (b)

The body covers a horizontal distance *AB* during its flight. This horizontal range is given by



For maximum horizontal range,  $\sin 2\theta = 1$ 

$$\therefore R_{\text{max}} = \frac{u^2}{g} \dots (ii)$$

Given, R = 3km,  $\theta = 30^{\circ}$ 

: From Eq. (i)

$$\frac{u^2}{g} = \frac{R}{\sin 2\theta} = \frac{3}{\sin 60^\circ} = \frac{3 \times 2}{\sqrt{3}} = \sqrt{3} \times 2$$

$$\frac{u^2}{g} = 3.464$$
m or  $R_{\text{max}} = 3.46$ cm

Hence, maximum range with velocity of projection u cannot be more than 3.464 m, Hence, it is not possible to hit a target 5 km away.

699 (a)

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{60} = \frac{\pi}{30} \ rad \ /s$$

700 (c)

As time periods are equal therefore ration of angular speeds will be one.  $\omega = \frac{2\pi}{r}$ 

701 (a)

$$x = 36t : v_x = \frac{dx}{dt} = 36 \text{ m/s}$$

$$y = 48t - 4.9t^2 : v_y = 48 - 9.8t$$
at  $t = 0$   $v_x = 36$  and  $v_y = 48$   $m/s$ 
So, angle of projection  $\theta = \tan^{-1}\left(\frac{v_y}{v_z}\right) = \tan^{-1}\left(\frac{4}{3}\right)$ 

702 (d)

Or  $\theta = \sin^{-1}(4/5)$ 

$$u = -50 \cos 60^{\circ} \text{ ms}^{-1} = -25 \text{ms}^{-1}$$
  
 $a = 10 \text{ ms}^{-2}, t = ?, s = 70 \text{ m}$ 

Using  $s = ut + \frac{1}{2}at^2$ , we get

$$70 = -25 + 5t^2$$
 or  $5t^2 - 25t - 70 = 0$   
or  $t^2 - 5t - 14 = 0$  or  $t^2 - 7t + 2t - 14 = 0$ 

or 
$$t(t-7) + 2(t-7) = 0$$
 or  $(t-7)(t+2) = 0$ 

or t = 7s [Rejecting –ve value of t]

703 (b)

Both the particles will meet at *C*, if their time of flight is the same. The time of flight of *A* is



$$T = \frac{2u\sin\theta}{g} = \frac{2 \times 10 \times \sin 60^{\circ}}{10} = \sqrt{3}s$$

For vertical downward motion of particle *B* from B to C

We have

$$h = \frac{1}{2}gT^2 = \frac{1}{2} \times 10 \times (\sqrt{3})^2 = 15 \text{ m}$$

Here, h = 1 m, r = 100 m, 2x = 1.5 mFor no skidding

$$\frac{mv^2}{r} \times h = mg x$$

$$v = \sqrt{\frac{g r x}{h}} = \sqrt{\frac{9.8 \times 100 \times 0.75}{1}}$$
  
 $v = 27.1 \text{ ms}^{-1}$ 

705 (a)

$$R_{\text{max}} = \frac{u^2}{g} = 4 H \text{ [For } \theta = 45^\circ\text{]}$$
  
 $4H = 400 \Rightarrow H = 100 m$ 

706 (c)

Centripetal acceleration, 
$$a_c = w^2 R$$
  
=  $\frac{(2\pi)^2 \times 1.5 \times 10^{11}}{(365 \times 86400)^2} = 6 \times 10^{-3} ms^{-2}$ 

707 (c)

K. E. =  $\frac{1}{2}mv^2$ . Which is scalar, so it remains constant

708 (b)

Projection of  $\vec{P}$  on  $\vec{Q}$  is  $P\cos\theta$ 

$$P\cos\theta = \frac{PQ\cos\theta}{Q} = \frac{\vec{P} \cdot \vec{Q}}{Q} = \vec{P} \cdot \vec{Q}$$



$$H = \frac{u^2 \sin^2 45^\circ}{2g} = \frac{u^2}{4g} \qquad ...(i)$$

$$R = \frac{u^2 \sin 90^\circ}{g} = \frac{u^2}{g}$$



$$\therefore \frac{R}{2} = \frac{u^2}{2a} \qquad \dots \text{(ii)}$$

$$\therefore \tan \alpha = \frac{H}{R/2}$$

$$=\frac{\frac{u^2}{4g}}{\frac{u^2}{2g}}=\frac{1}{2} : \alpha=\tan^{-1}\left(\frac{1}{2}\right)$$

710 (c)

$$R = \frac{u^2 \sin 2\theta}{g} = R \propto u^2$$
. So if the speed of

projection doubled, the range will becomes four

$$i.e., 4 \times 50 = 200 m$$

711 (d)

As is clear from figure



$$T\sin\theta = \frac{mv^2}{r}, T\cos\theta = mg$$

Dividing, we get

$$\tan \theta = \frac{v^2}{rg} = \frac{r}{g} \left(\frac{2\pi}{T}\right)^2$$

$$\frac{2\pi}{T} = \sqrt{\frac{g \tan \theta}{r}} = \sqrt{\frac{g \tan \theta}{l \sin \theta}} = \sqrt{\frac{g}{l \cos \theta}}$$

or 
$$T = 2\pi \sqrt{\frac{l\cos\theta}{g}}$$

712 (d)

Let  $\omega$  is the angular speed of revolution



$$T_2 - T_3 = m\omega^2 2l \Rightarrow T_2 = m\omega^2 5l$$

$$T_1 - T_2 = m\omega^2 l \Rightarrow T_1 = m\omega^2 6l$$

$$T_3:T_2:T_1=3:5:6$$

713 (b)

$$\widehat{A} \cdot \widehat{B} = (1)(1)\cos 0^{\circ} = 1 \neq AB.$$

714 (c)

$$S = u \times \sqrt{\frac{2h}{g}} \Rightarrow 10 = u \sqrt{2 \times \frac{5}{10}} \Rightarrow u = 10 \text{ m/s}$$

715 (d)

Angular momentum of the projectile

$$L = m v_h r_\perp$$

$$= m(v\cos\theta)h$$

(where h is the maximum height)

$$\Rightarrow = m(v\cos\theta) \left(\frac{v^2\sin^2\theta}{2g}\right)$$



$$L = \frac{mv^3 \sin^2\theta \cos\theta}{2g} = \frac{\sqrt{3}mv^3}{16g}$$

716 (b)

$$\frac{v^2 \sin 2\theta}{g} = \frac{\sqrt{3}v^2}{2g}$$

or 
$$\sin 2\theta = \frac{\sqrt{3}}{2}$$
 or  $2\theta = 60^{\circ}$  or  $\theta = 30^{\circ}$ 

Let us cross-check with the help of data for vertical range

$$\frac{v^2 \sin^2 \theta}{2g} = \frac{v^2}{8g} \quad \text{or} \quad \sin^2 \theta = \frac{1}{4}$$

or 
$$\sin \theta = \frac{1}{2}$$
 or  $\theta = 30^{\circ}$ 

717 (b)

Let  $v_1$  be the velocity of the car and  $v_2$  be the velocity of the parcel. The parcel is thrown at an angle  $\theta$  from O. It reaches the mass at M.



$$\therefore \cos \theta = \frac{v_1}{v_2} = \frac{10}{10\sqrt{2}} = \frac{1}{\sqrt{2}} = \cos 45^{\circ}$$

So 
$$\theta = 45^\circ$$

718 (b)

One circular motion, the force acts along the radius and displacement at a location is perpendicular to the radius ie,  $\theta = 90^{\circ}$ 

As work done = 
$$\vec{\mathbf{F}} \cdot \vec{\mathbf{s}} = Fs \cos 90^\circ = 0$$

720 (d)

As the mass is attached to the end of a rod. Which does not stacken, therefore, taking v = 0 at the highest point, from  $v^2 - u^2 = 2a s$ 

$$0 - u^2 = 2(-g)2l$$

$$\therefore u = \sqrt{4gl}$$

721 (a)

$$\vec{A} \times \vec{B} = (2\hat{\imath} + 3\hat{\jmath}) \times (\hat{\imath} + 4\hat{\jmath})$$
  
=  $8(\hat{\imath} \times \hat{\jmath}) + 3(\hat{\jmath} \times \hat{\imath}) = 8\hat{k} - 3\hat{k} = 5\hat{k}$ 

$$= 8(\hat{\imath} \times \hat{\jmath}) + 3(\hat{\jmath} \times \hat{\imath}) = 8\hat{k} - 3\hat{k} = 5\hat{k}$$

722 (a)

$$\frac{1}{2}mv^2 = mg(3-1) = 2mg$$
 or  $v = \sqrt{4}g = 2\sqrt{g}$ 

Vertical component at  $A = 2\sqrt{g} \sin 30^{\circ} = \sqrt{g}$ 

723 (b)

$$x = (u\cos\theta)t = 6$$

$$u\cos\theta = \frac{x}{t} = 6$$

$$y = (u\sin\theta)t = -\frac{1}{2}gt^2$$

$$y = 8t - 5t^2 \Rightarrow u\sin\theta = 8$$

$$u = 10 \text{m/s}$$

724 (b)

Acceleration of the particle is

$$a = r\omega^2 = r(2\pi n)^2$$

$$=0.25\times(2\pi\times2)^2$$

$$= 16\pi^2 \times 0.25$$

$$= 4\pi^2 \text{ ms}^{-2}$$

725 (a)

For water not to spil,  $\frac{mv^2}{r} = mg$ 

or 
$$v = \sqrt{r \, g} = \sqrt{1.6 \times 10} = 4 \, \text{ms}^{-1}$$

727 (b)

$$\vec{\mathbf{p}}_B - \vec{\mathbf{p}}_A = m(\vec{\mathbf{v}}_B - \vec{\mathbf{v}}_A) = mv(\hat{\mathbf{j}} + \hat{\mathbf{i}})$$

$$= 2mv\hat{j} = 2kg \text{ ms}^{-1}$$
 ...(i)

$$\vec{\mathbf{F}}_B - \vec{\mathbf{F}}_A = \frac{mv^2}{R}(-\hat{\mathbf{i}}) - \frac{mv^2}{R}(+\hat{\mathbf{i}})$$

$$=\frac{2mv^2}{R}(-\hat{\mathbf{i}}) = 8N$$
 ...(ii)

Dividing Eq. (ii) by Eq. (i), 
$$\frac{v}{R} = \omega = 4 \text{ rad s}^{-1}$$

728 (a)

Horizontal component of velocity  $v_x = 500 \text{ms}^{-1}$ and vertical components of velocity while striking the ground

$$v_y = 0 + 10 \times 10 = 100 \text{ ms}^{-1}$$

 $\therefore$  Angle with which it strikes the ground

$$\theta = \tan^{-1}\left(\frac{v_y}{v_x}\right) = \tan^{-1}\left(\frac{100}{500}\right)$$



$$\theta = \tan^{-1}\left(\frac{1}{5}\right)$$

729 (c)

Time of flight. 
$$T = \frac{2u\sin\theta}{g}$$

Time of flight. 
$$T = \frac{2u \sin \theta}{g}$$
  
Horizontal range,  $R = \frac{u^2 \sin 2\theta}{g}$ 

Change in angular momentum,

$$\left| d \vec{\mathbf{L}} \right| = \left| \vec{\mathbf{L}}_f - \vec{\mathbf{L}}_i \right|$$
 about point of projection

$$= (mu\sin\theta) \times \frac{u^2\sin 2\theta}{g}$$

$$=\frac{mu^3\sin\theta\sin2\theta}$$

Torque 
$$|\vec{\tau}| = \frac{\text{change in angular momentum}}{\text{time of flight}}$$

$$= \left| \frac{d\vec{\mathbf{L}}}{T} \right|$$

$$\mathbf{v} = ky\hat{\mathbf{i}} + kx\,\hat{\mathbf{j}}$$



$$\frac{dx}{dt} = ky, \frac{dy}{dt} = kx$$
$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{kx}{ky}$$
$$ydy = xdx$$
$$y^{2} = x^{2} + c$$

732 (a)

In this problem it is assumed that particle although moving in a vertical loop but it speed remain constant

Tension at lowest point  $T_{\text{max}} = \frac{mv^2}{r} + mg$ 

Tension at highest point  $T_{\min} = \frac{mv^2}{r} - mg$ 

$$\frac{T_{\text{max}}}{T_{\text{min}}} = \frac{\frac{mv^2}{r} + mg}{\frac{mv^2}{r} - mg} = \frac{5}{3}$$

$$v = \sqrt{4gr} = \sqrt{4 \times 9.8 \times 2.5} = \sqrt{98} \text{ ms}^{-1}$$

733 (d)

From law of conservation of energy, potential energy of fall gets converted to kinetic energy.



$$\therefore$$
 PE = KE

$$mgh = \frac{1}{2}mv^2$$

or 
$$v = \sqrt{2gh}$$
 .... (i)

Also, the horizontal component of force is equal centrifugal force.

$$\therefore mg\cos\theta = \frac{mv^2}{R} \dots (ii)$$

From Eq. (i)

$$\therefore mg\cos\theta = \frac{2mgh}{R} ... (iii)$$

From  $\triangle AOB$ 

$$\cos \theta = \frac{(R - h)}{R}$$

$$\Rightarrow mg\left(\frac{(R - h)}{R}\right) = \frac{2mgh}{R}$$

$$\Rightarrow h = \frac{R}{3}$$

734 (c)

Since, 
$$n=2$$
,  $\omega=2\pi\times 2=4\pi\ rad/s^2$   
So acceleration  $=\omega^2 r=(4\pi)^2\times\frac{25}{100}\ m/s^2=4\pi^2$ 

735 (a)

Here, 
$$2\pi r = 34.3 \Rightarrow r = \frac{3403}{2\pi}$$
 and  $v = \frac{2\pi r}{T}$ 
$$= \frac{2\pi r}{\sqrt{33}}$$

Angle of banking  $\theta = \tan^{-1} \left( \frac{v^2}{rq} \right) = 45^\circ$ 

736 (d)

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 980}{9.8}} = 10\sqrt{2} \text{ s}$$

 $R = 4H \cot \theta$ , if  $R = 4\sqrt{3}H$  then  $\cot \theta = \sqrt{3} \Rightarrow \theta =$ 

739 (b)

Since the ball reaches from one player to another in 2 s, so the time period of the flite, T = 2s

or 
$$\frac{2u\sin\theta}{g} = 2$$

or  $u\sin\theta = g$  .. (i)

Now, we know that the maximum height of the projection.

$$H = \frac{u^2 \sin^2 \theta}{2g}$$

or 
$$H = \frac{(u\sin\theta)^2}{2a}$$

On putting the value of  $u\sin\theta$  from Eq.(i), we have

$$H = \frac{g^2}{2g} = \frac{g}{2}$$

or 
$$H = \frac{g}{2} = \frac{10}{2}$$
 m or  $H = 5$  m

740 (a)

$$a = \frac{v^2}{r} = \frac{(400)^2}{160} = 10^3 m/s^2 = 1 \, km/s^2$$

741 (a)

$$25 = 0.25 \times v^2 / 1.96$$

or 
$$v = (25 \times 1.96/0.25)^{1/2} = 5 \times \frac{14}{5} = 14 \text{ms}^{-1}$$

742 (b)

Given, f = 1200 rpm,

$$r = 30 \text{ cm} = \frac{30}{100} \text{ m}$$

Acceleration of a point at the tip of the blade

= centripetal acceleration

$$= \omega^2 r = (2\pi f)^2 r$$

$$= \left(2 \times \frac{22}{7} \times \frac{1200}{60}\right)^2 \times \frac{30}{100}$$

743 (b)

Assuming particle 2 to be at rest, substituting in



$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta} \quad (\theta = 0^\circ)$$

We have 
$$-h = \frac{-g}{2(4v^2)}$$

or 
$$v = \sqrt{\frac{g}{8h}}$$

Which is a straight line passing through origin with slope  $\sqrt{\frac{g}{gt}}$ 

745 (c)

Horizontal distance of target is 200 m. Speed of bullet =  $2000 \text{ ms}^{-1}$ 

Time taken by bullet to cover the horizontal distance

$$t = \frac{200}{2000} = \frac{1}{10} \, \mathrm{s}$$

During  $\frac{1}{10}$  s, the bullet will fall down vertically due to gravitational acceleration.

Therefore, height above the target, so that the bullet hits the target is

$$h = u + \frac{1}{2}gt^2 = \left(0 \times \frac{1}{10}\right) + \frac{1}{2} \times 10 \times (0.1)^2$$
  
= 0.05m = 5cm

746 (d)

The three vectors  $\overrightarrow{A}$ ,  $\overrightarrow{B}$  and  $\overrightarrow{C}$  are represented as shown in figure (a) where A=1, B=2 and C=3. Here the sides of the equilateral triangle represent only the directions and not the magnitudes of the vectors.

In figure (b), these vector are drawn from a common point O and they are lying in X-Y plane. Resolving these vectors into two rectangular components along X-axis and Y-axis, we have, the X-component of resultant vector as



$$R_X = |\vec{A}| + |\vec{B}| \cos (180^\circ - 60^\circ) + |\vec{C}| \cos (180^\circ + 60^\circ)$$
  
=  $-1 - 2\cos 60^\circ - 3\cos 60^\circ$ 

$$= -1 - 2\cos 60 - 3\cos 60$$
$$= -1 - 2 \times \frac{1}{2} - 3 \times \frac{1}{2} = -\frac{3}{2}$$

Y-component of resultant vector is

$$R_Y = 0 + |B|\sin(180^\circ - 60^\circ) + |\vec{C}|\sin(180^\circ + 60^\circ)$$

$$= 0 + 2\sin 60^{\circ} - 3\sin 60^{\circ} = -\sin 60^{\circ} = \sqrt{3}/2$$

Magnitude of resultant vector,

$$R = \sqrt{R_X^2 + R_Y^2} = \sqrt{\left(-\frac{3}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2}$$

 $=\sqrt{3}$  units

747 (a)

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 2}{9.8}} = 0.64 \text{ s}$$
$$v = \frac{10}{t} = 15.62 \text{ ms}^{-1}$$

$$a = \frac{v^2}{R} = 163 \text{ ms}^{-2}$$

748 (d)

$$R = \frac{v^2 \sin 2\theta}{g} \Rightarrow \theta = \frac{1}{2} \sin^{-1} \left(\frac{gR}{v^2}\right)$$

749 (c)

Here, 
$$v = 900 \text{ km h}^{-1} = \frac{900 \times 1000}{60 \times 60} = 250 \text{ ms}^{-1}$$
  
 $g = 9.8 \text{ ms}^{-2}$ 

For apparent weightlessness,  $\frac{mv^2}{r} = mg$ 

$$r = \frac{v^2}{g} = \frac{250 \times 250}{9.8}$$

$$= 6377.5 \text{ m} = 6.4 \text{ km}$$

750 (c)

$$T = \frac{2 \times 50 \times \frac{1}{2}}{10} = 5 \text{ s}$$

Horizontal distance travelled in last 2 s

$$= 50 \times \cos 30^{\circ} \times 2 \text{ m}$$

$$= 100 \times \frac{2}{\sqrt{3}}$$
 m  $= 50\sqrt{3}$  m  $= 86.6$  m

751 (b)

$$\vec{F} = \frac{d\vec{p}}{dt} = (-2\sin t)\hat{i} + (2\cos t)\hat{j}$$
$$\cos\hat{\theta} = \frac{\vec{F} \cdot \vec{P}}{Fp} = 0$$
$$\therefore \quad \theta = 90^{\circ}$$

752 (b)

Change in momentum =  $2mv \sin \theta = 2mv \sin \frac{\pi}{4} = \sqrt{2}mv$ 

753 (b)

Here, 
$$r = 2t, \theta = 4t$$
  
 $l = r\theta = (2t)(4t) = 8t^2$   
 $v = \frac{dl}{dt} = \frac{d}{dt}(8t)^2 = 16t$   
 $= 16 \times 1 = 16 \text{ ms}^{-1}$ 

754 **(c**)

The vertical component of velocity of projection





$$= -50 \sin 30^{\circ} = -25 \, m/s$$

If t be the time taken to reach the ground,

$$h = ut + \frac{1}{2}gt^2 \Rightarrow 70 = -25t + \frac{1}{2} \times 10t^2$$
  
\Rightarrow 70 = -25t + 5t^2 \Rightarrow t^2 - 5t - 14 = 0 \Rightarrow t =  
-2s and 7s

Since, 
$$t = -2 s$$
 is not valid  $\therefore t = 7s$ 

#### 755 (c)

Horizontal component =  $u \cos \theta$ 

Vertical component =  $u \sin \theta$ 

$$g = -10 \text{ms}^{-2}, u = 50 \text{ms}^{-1}, h = 5 \text{m}, t = 2 \text{ s}$$

$$h = u_y t + \frac{1}{2} g t^2$$



$$\therefore 5 = 50 \sin \theta - \frac{1}{2} \times 10 \times 4$$

or 
$$5 = 50 \sin \theta - 20$$

or 
$$\sin \theta = \frac{25}{50} = \frac{1}{2}$$

$$\theta = 30^{\circ}$$

#### 756 (b)

$$(KE)_H = \frac{1}{2}(KE)_i$$

$$\frac{1}{2}mv^2\cos^2\theta = \frac{1}{2}(\frac{1}{2}mv^2) = \frac{1}{4}mv^2$$

or 
$$\cos^2 \theta = \frac{1}{2}$$
 or  $\cos \theta = \frac{1}{\sqrt{2}}$  or  $\theta = 45^{\circ}$ 

#### 757 (a)

$$x = (u\cos\theta)t = 6t$$

$$y = (u \sin \theta) t - \frac{1}{2}gt^2 = 8t - 5t^2$$

Therefore,  $u \sin \theta = 8$ 

$$u\cos\theta=6$$

Range. 
$$R = \frac{u^2 2 \sin 2\theta}{g}$$

$$=\frac{u^2\times 2\sin\theta\cos\theta}{g}$$

$$=\frac{2(u\sin\theta)(\cos\theta)}{g}$$

$$=\frac{2(8)(6)}{10}$$
 = 9.6 m

# 758 (c)

Since horizontal component of velocity is constant, hence momentum is constant

Horizontal distance travelled by the bomb S = $u \times t$ 

$$= 200 \times \sqrt{\frac{2h}{g}} = 200 \times \sqrt{\frac{2 \times 8 \times 10^3}{9.8}} = 8.081 \, km$$

#### 760 (c)

Let time taken by the body to fall from point C to *B* be t'' Then,  $t_1 + 2t'' = t_2$ 

B be t' Then, 
$$t_1 + 2t'' = t$$

$$t^{\prime\prime} = \left(\frac{t_2 - t_1}{2}\right) \qquad \dots (i$$

Total time taken, to reach point C



$$T=t_1+t^{\prime\prime}$$

$$=t_1+\frac{t_2-t_2}{2}$$

$$=\frac{2t_1+t_2-t_1}{2}=\left(\frac{t_1+t_2}{2}\right)$$

Then maximum height attained

$$H_{\text{max}} = \frac{1}{2}g(T)^2 = \frac{1}{2}g\left(\frac{T_1 + t_2}{2}\right)^2$$
1  $(t_1 + t_2)^2$ 

$$=\frac{1}{2}g.\frac{(t_1+t_2)^2}{4}$$

$$\Rightarrow H_{\text{max}} = \frac{1}{8}g.(t_1 + t_2)^2 m$$

#### 761 (d)

Required angle =  $\frac{\pi}{2} - \frac{5\pi}{36} = \frac{18\pi - 5\pi}{36} = \frac{13\pi}{36}$  rad

Displacement,  $\vec{r} = \vec{r}_2 - \vec{r}_1$ 

$$= (\hat{i} - \hat{j} + 2\hat{k}) - (\hat{i} - \hat{j} + 2\hat{k}) = -2\hat{i} + \hat{k}$$

 $\therefore$  workdone,  $W = \vec{F} \cdot \vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) \cdot (-2\hat{j} + 3\hat{k})$ 

$$\hat{\mathbf{k}} = -1 \, \mathbf{J}$$

#### 763 (a)

Minimum speed at the lowest point

$$=\sqrt{5rg}=\sqrt{5\times5\times9.8}=15.65 \text{ ms}^{-1}$$

#### 765 (d)

$$R\cos\theta = mg \dots (i)$$

$$R \sin \theta = \frac{mv^2}{R} \dots (ii)$$

From, Eqs. (i) and (ii) we get

$$\therefore \tan \theta = \frac{v^2}{Rg}$$



# **MOTION IN A PLANE**

#### Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

**Statement 1:**  $\vec{\mathbf{v}} = \vec{\omega} \times \vec{\mathbf{r}}$  and  $\vec{\mathbf{v}} \neq \vec{\mathbf{r}} \times \vec{\omega}$ 

Statement 2: Cross product of vector is commutative

2

- **Statement 1:** The path of a projectile is parabolic only when the acceleration of the projectile is constant
- **Statement 2:** Acceleration of projectile is constant, if projectile does not go to very large height, in gravitational field

3

- **Statement 1:** Two bombs of 5kg and 10kg are thrown from a cannon in the same direction with different velocities, then both will reach the earth simultaneously
- Statement 2: Time of fight does not depend upon mass

4

- **Statement 1:** During a turn, the value of centripetal force should be less than the limiting frictionless force
- Statement 2: The centripetal force is provided by the frictional force between the tyres and the road

5

- Statement 1: When a vehicle takes a turn on the road, it travels along a nearly circular path
- Statement 2: In circular motion, velocity of vehicle remains same

6

**Statement 1:** Improper banking of roads causes wear and tear of tyres



	Statement 2:	The necessary centripetal force is provided by the force of friction between the tyres and the road
	Statement 1:	The trajectory of projectile is quadratic in $y$ and linear in $x$
	Statement 2:	y component of trajectory is independent of $x$ -component
	Statement 1:	Angular velocity of seconds hand of a watch is $\frac{\pi}{30}$ rad s ⁻¹
		$\omega = \frac{2\pi}{T} = \frac{2\pi}{60} = \frac{\pi}{30} \text{rad s}^{-1}$
	Statement 1:	In order to hit a target, a man should point his rifle in the same direction as target
	Statement 2:	The horizontal range of the bullet is dependent on the angle of projectile with horizontal direction
)		
	Statement 1:	A vector $\vec{A}$ points vertically upwards and $\vec{B}$ points towards North. The vector product $\vec{A} \times \vec{B}$ is along East.
	Statement 2:	The direction of $\vec{A} \times \vec{B}$ is given by right hand rule.
Ş		
	Statement 1:	angle between $\hat{\imath} + \hat{\jmath}$ and $\hat{\imath}$ is 45°
	Statement 2:	$\hat{\imath}+\hat{\jmath}$ is equally include to both $\hat{\imath}$ and $\hat{\jmath}$ and the angel between $\hat{\imath}$ and $\hat{\jmath}$ is $90^{\circ}$
	Statement 1:	In case of angular projection of a projectile the maximum height occurs when the
	Statement 2:	projectile covers a horizontal distance equal to half of the horizontal range Maximum height occurs when angle of projection is 90°
	Statement 1:	When an automobile is going too fast around curve overturns, its inner wheels leave the ground first
ve ve	Statement 2:	For a safe turn the velocity of automobile should be less than the value of safe limiting velocity
	Statement 1:	In projectile motion, the angle between the instantaneous velocity and acceleration at the
		highest point is 180°
	Statement 2:	At the highest point, velocity of projectile will be in horizontal direction only



direction continuously changes

Statement 1: Two similar trains are moving along the equatorial line with the same speed but in opposite direction. They will exert equal pressure on the rails Statement 2: In uniform circular motion the magnitude of acceleration remains constant but the



7

8

9

10

11

12

13

14

15

16

**Statement 1:** Two particles of different mass, projected with same velocity at same angles. The maximum height attained by both the particle will be same

**Statement 2:** The maximum height of projectile is independent of particle mass

17

**Statement 1:** A body of mass 1 kg is making 1 rps in a circle of radius 1 m. centrifugal force acting on it

is  $4\pi^2 N$ 

**Statement 2:** Centrifugal force is given by  $F = \frac{mv^2}{r}$ 

18

Statement 1: When a particle moves on a circular path with constant speed, it is called uniform circular

motion.

Statement 2: For a uniform circular motion, necessary a force is always acting parallel to the direction

of velocity

19

Statement 1: A physical quantity cannot be called as a vector if its magnitude is zero.

Statement 2: A vector has both, magnitude and direction.

20

Statement 1: When a body is dropped or thrown horizontally from the same height, it would reach the

ground at the same time

Statement 2: Horizontal velocity has no effect on the vertical direction

21

Statement 1: A safe turn by a cyclist should neither be fast nor sharp

Statement 2: The bending angle from the vertical would decrease with increase in velocity

22

Statement 1: A coin is placed on phonogram turn table. The motor is started, coin moves along the

moving table

Statement 2: The rotating table is providing necessary centripetal force to the coin

23

**Statement 1:** For looping a vertical loop of radius r, the minimum velocity at the lowest point should be

 $\sqrt{5gr}$ 

Statement 2: In that event, velocity at the highest point would be zero

24

Statement 1: As the frictional force increases, the safe velocity limit for taking a turn on an unbanked

road also increases

Statement 2: Banking of roads will increases the value of limiting velocity

25





	Statement 1:	When range of a projectile is maximum, its angle of projection may be $45^{\circ}$ or $135^{\circ}$
	Statement 2:	Whether $\theta$ is 45° or 135°, value of range remains the same, only the sign changes
26		
	Statement 1:	The maximum horizontal range of projectile is proportional to square of velocity
	Statement 2:	The maximum horizontal range of projectile is equal to maximum height attained by
27		projectile
	Statement 1:	At the highest point of projectile motion given angular projection, the velocity is not zero
	Statement 2:	Only the vertical component of velocity is zero whereas horizontal component still exists
28		
	Statement 1:	When the velocity of projection of a body is made $n$ time, its time of flight becomes $n$
	Statement 2:	times Range of projectile does not depend on the initial velocity of body
29		
	Statement 1:	The resultant of three vectors $\overrightarrow{OA}$ and $\overrightarrow{OB}$ and $\overrightarrow{OC}$ as shown in figure is $R(1 + \sqrt{2})$ . $R$ is the
		radius of circle
	Statement 2:	$\overrightarrow{OA} + \overrightarrow{OC}$ is along $\overrightarrow{OB}$ and $(\overrightarrow{OA} + \overrightarrow{OC}) + \overrightarrow{OB}$ is along $\overrightarrow{OB}$ .
30	01200 VI 90740	
	Statement 1:	A football whether kicked at 30° or 60° will strike the ground at the same place, although when kicked at 60°, it will remain longer in the air
	Statement 2:	Air resistance is more for larger angle
31		
	Statement 1:	If both the speed of a body and radius of its circular path are doubled, then centripetal force also gets doubled
	Statement 2:	Centripetal force is directly proportional to both speed of a body and radius of circular
32		path
	Statement 1:	A safe turn by a cyclist should neither be fast nor sharp
	Statement 2:	As the bending of angle from the vertical would decrease
33		
	Statement 1:	Improper banking of roads causes wear and tear of tyres
	Statement 2:	The necessary centripetal force in that event is provided by the force of friction between
34		the tyres and the road
.51	Statement 1:	In circular motion, the centripetal and centrifugal force acting in opposite direction balance each other



Statement 2: Centripetal and centrifugal forces don't act at the same time

35

**Statement 1:** The vector  $\frac{1}{\sqrt{3}}\hat{\mathbf{i}} + \frac{1}{\sqrt{3}}\hat{\mathbf{j}} + \frac{1}{\sqrt{3}}\hat{\mathbf{k}}$  is a unit vector.

Statement 2: Unit vector is one which has unit magnitude and a given direction.

36

Statement 1: When an automobile while going too fast around a curve overturns, its inner wheels leave

the ground first

Statement 2: For a safe turn the velocity of automobiles should be less than the value of safe limit



# **MOTION IN A PLANE**

11110000	e 10 e 10 e 10 e 10 e		I make a tracket	1000000			
AR	114	7.77	$\mathbf{F}\mathbf{R}$	TZ	M	77	ı
$\Delta$		W	вк		-	٧.	٠

1)	c	2)	a	3)	d	4)	a	21)	c	22)	d	23)	d	24)	b
5)	c	6)	a	7)	d	8)	a	25)	a	26)	c	27)	a	28)	c
9)	d	10)	d	11)	a	12)	a	29)	a	30)	c	31)	c	32)	c
13)	a	14)	d	15)	d	16)	a	33)	a	34)	d	35)	a	36)	b
	а														



# MOTION IN A PLANE

# : HINTS AND SOLUTIONS :

#### 1 (c)

Cross product of vectors is anticommutative. Therefore,  $\vec{\mathbf{v}} = \vec{\omega} \times \vec{\mathbf{r}} = -\vec{\mathbf{r}} \times \vec{\omega}$ . Choice (c) is correct

#### 2 (a)

Let t be the time taken by the projectile while going through height h. Taking vertical upward motion of projectile, we have

$$y_0 = 0, y = h, u_y = 2\sqrt{gh} \sin 60^\circ$$

$$=2\sqrt{gh}\times\sqrt{3}/2=\sqrt{3gh}$$

$$a_{y} = -g, t = ?$$

As, 
$$y = y_0 + u_y t + \frac{1}{2} a_y t^2$$

$$h = 0 + \sqrt{3gh} t + \frac{1}{2} (-g)t^2$$

or 
$$gt^2 - 2\sqrt{3gh}t + 2h = 0$$

On solving, we get two value of time,

$$ie, \left(\frac{\sqrt{3gh} + \sqrt{gh}}{g}\right)$$

and  $\left(\frac{\sqrt{3gh}-\sqrt{gh}}{g}\right)$ , Here, the first time is to reach a

height h while going up and second time is to come back at height h. Therefore, time of projectile above the height h is

$$= \left(\frac{\sqrt{3gh} + \sqrt{gh}}{g}\right) - \left(\frac{\sqrt{3gh} - \sqrt{gh}}{g}\right)$$

$$=\frac{2\sqrt{gh}}{g}=\sqrt{\frac{4h}{g}}$$

$$\tan \theta = \frac{u_y}{u_x} = \frac{30}{10\sqrt{3}} = \sqrt{3} = \tan 60^\circ$$

# (a)

The body is able to move in a circular path due to centripetal force. The centripetal force in case of vehicle is provided by frictional force. Thus if the value of frictional force  $\mu mg$  is less than centripetal force, then it is not possible for a vehicle to take a turn and the body would overturn

Thus condition for safe turning of vehicle is,  $\mu mg \ge \frac{mv^2}{r}$ 

#### 5 (c)

In circular motion the frictional force acting towards the centre of the horizontal circular path provides the centripetal force and avoid overturning of vehicle. Due to the change in direction of motion, velocity changes in circular motion

#### 6 (a)

When roads are not properly banked, force of friction between tyres and road provides partially the necessary centripetal force. This cause wear and tear of tyres

#### (d)

$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$

#### 8

For second's hand, T = 60 s





$$\omega = \frac{2\pi}{T} = \frac{2\pi}{60} = \frac{\pi}{30} \text{ rad s}^{-1}$$

9 (d)

The man should point his rifle at a point higher than the target since the bullet suffers a vertically downward deflection  $\left(y = \frac{1}{2}gt^2\right)$  due to gravity

10 (d)

In assertion, the direction of  $(\overrightarrow{A} \times \overrightarrow{B})$  according to Right Hand Rule is towards West. Thus assertion is false and reason is true.

11 (a)

$$\cos \theta = \frac{(\hat{i}+\hat{j})\cdot\hat{i}}{|\hat{i}+\hat{j}||\hat{i}|} = \frac{1}{\sqrt{2}} = \cos 45^{\circ}$$

so, 
$$\theta = 45^{\circ}$$

12 (a)

Maximum height =  $\frac{u^2 \sin^2 \theta}{2g}$ 

$$= \frac{(2\sqrt{gh})^2 \sin^2 60^\circ}{2g} = \frac{4gh \times 3/4}{2g} = \frac{3h}{2}$$

13 (a)

Let  $\mu$  be the coefficient of static friction between the tyres and the road, the magnitude of friction force F will not exceed  $\mu mg$ , so that  $F' \leq \mu mg$ 

Hence, for a safe turn  $\frac{mv^2}{r} \le \mu mg$ 

or 
$$\mu \ge \frac{v^2}{rg}$$
 or  $v \le \sqrt{\mu rg}$ 

Hence, when speed of car (automobile) exceeds the value of  $\sqrt{\mu r g}$  then it overturns, as the inner wheels are moving in a circle of smaller radius, the maximum possible velocity is less for it. Therefore, the wheels leave the ground first and car will overturn on the outside

14 (d)

At the highest point, vertical component of velocity becomes zero so there will be only horizontal velocity and it is perpendicular to the acceleration due to gravity 15 (d)

Due to earth's axial rotation, the speed of the trains relative to earth will be different and hence the centripetal forces on them will be different. Thus their effective weights  $mg - \frac{mv^2}{r}$  and  $mg + \frac{mv^2}{r}$  will be different. So they exert different pressure on the rails

16 **(a)** 

 $H=rac{u^2\sin^2 heta}{2g}$  i.e. it is independent of mass of projectile

17 (a)

From relation

$$F = \frac{mv^2}{r} = \frac{m(r\omega)^2}{r} = mr\omega^2$$

$$= mr(2\pi v)^2 = 4\pi^2 mrv^2$$

Here, 
$$m = 1 kg$$
,  $v = 1 rps$ ,  $r = 1m$ 

$$\therefore F = 4\pi^2 \times 1 \times 1 \times 1^2 = 4\pi^2 N$$

18 (c)

Here assertion is correct but reason is wrong; because in circular motion the direction of centripetal force is perpendicular to the velocity

19 (d)

Here assertion is false and reason is true.

20 (a)

Both bodies will take same time to reach the earth because vertical downward component of the velocity for both the bodies will be zero and time of descent =  $\sqrt{\frac{2h}{g}}$ . Horizontal velocity has no effect on the vertical direction

21 (c)

For safe turn  $\tan \theta \ge \frac{v^2}{ra}$ 

It is clear that for safe turn v should be small and r should be large. Also blending angle from the vertical would increase in velocity



#### 22 (d)

Within a certain speed of the turn table the frictional force between the coin and the turn table supplies the necessary centripetal force required for circular motion. On further increase of speed, the frictional force cannot supply the necessary centripetal force. Therefore the coin files off tangentially

# 23 (d)

When velocity at the lowest point is  $\sqrt{5gr}$ , velocity at highest point =  $\sqrt{gr} \neq zero$ . That is why, the vertical loop is completed

# 24 **(b)**

On an unbanked road, friction provides the necessary centripetal force  $\frac{mv^2}{r}=\mu mg \div v=\sqrt{\mu rg}$ 

Thus with increase in friction, safe velocity limit also increases

When the road is banked with angle of  $\theta$  than its limiting velocity is given by

$$v = \sqrt{\frac{rg(\tan\theta + \mu)}{1 - \mu \tan\theta}}$$

Thus limiting velocity increase with banking of road

#### 25 (a)

Range, 
$$R = \frac{u^2 \sin 2\theta}{g}$$

When 
$$\theta = 45^\circ$$
,  $R_{\text{max}} = \frac{u^2}{g} \sin 90^\circ = \frac{u^2}{g}$ 

When 
$$\theta = 135^{\circ}$$
,  $R_{\text{max}} = \frac{u^2}{g} \sin 270^{\circ} = \frac{-u^2}{g}$ 

Negative sign shows opposite direction

#### 26 (c)

$$R = \frac{u^2 \sin 2\theta}{g} \therefore R_{\text{max}} = \frac{u^2}{g} \text{ when } \theta = 45^{\circ} \therefore R_{\text{max}} \propto u^2$$

Height 
$$H = \frac{u^2 \sin^2 \theta}{2g} \Rightarrow H_{\text{max}} = \frac{u^2}{2g}$$

When 
$$\theta = 90^{\circ}$$

It is clear that  $H_{\text{max}} = \frac{R_{\text{max}}}{2}$ 

#### 27 (a)

Horizontal range =  $\frac{u^2 \sin^2 \theta}{g}$ 

$$=\frac{\left(2\sqrt{gh}\right)^2\sin 2\times 60^\circ}{g}=2\sqrt{3}h$$

## 28 (c)

 $T \propto u$  and  $R \propto u^2$ 

When velocity of projection of a body is made n times, then its time of flight becomes n times and range becomes  $n^2$  times

#### 29 (a)

$$OA = OC$$

 $\overrightarrow{OC} + \overrightarrow{OC}$  is along  $\overrightarrow{OB}$  (bisector) and its magnitudes is

$$2R\cos 45^{\circ} = R\sqrt{2}$$

 $(\overrightarrow{OC} + \overrightarrow{OC}) + \overrightarrow{OB}$  is along  $\overrightarrow{OB}$  and its magnitudes is

$$R\sqrt{2} + R = R(1 + \sqrt{2})$$

#### 30 (c)

Time of flight,  $T = \frac{2u_y}{g}$ 

or 
$$u_y = \frac{gT}{2} = \frac{10 \times 6}{2} = 30 \text{ ms}^{-1}$$

Vertical velocity after 2s,  $v_y = u_y - gt$ 

$$= 30 - 10 \times 2 = 10 \text{ms}^{-1}$$

Horizontal velocity after 2 s,  $v_x = u_x$ 

As per question,  $\tan 30^\circ = \frac{v_y}{v_x} = \frac{10}{u_x}$ 

or 
$$u_x = \frac{10}{\tan 30^\circ} = 10\sqrt{3} \text{ms}^{-1}$$

$$\therefore \ u = \sqrt{u_x^2 + u_y^2} = \sqrt{\left(10\sqrt{3}\right)^2 + (30)^2}$$

$$= 20\sqrt{3} \text{ ms}^{-1}$$





# 31 (c)

Centripetal force is defined from formula

$$F = \frac{mv^2}{r} \Rightarrow F \propto \frac{v^2}{r}$$

If v and r both are doubled then F also gets doubled

# 32 (c)

$$\tan \theta = \frac{v^2}{rg}$$

When v is large and r is small  $\tan \theta$  increases. Therefore  $\theta$  increases, chances of skidding increase. Choice (c) is correct

## 33 (a)

When roads are not properly banked force of friction between tyres and road provides partially the necessary centripetal force. This causes wear and tear

# 34 (d)

While moving along a circle, the body has a constant tendency to regain its natural straight path

This tendency gives rise to a force called centrifugal force. The centrifugal force does not act on the body in motion, the only force acting on the body in motion is centripetal force. The centrifugal force acts on the source of centripetal force to displace it radially outward from the centre of the path

# 35 (a)

$$\vec{A} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$

$$A = \left[ \left( \frac{1}{\sqrt{3}} \right)^2 + \left( \left( \frac{1}{\sqrt{3}} \right)^2 + \left( \frac{1}{\sqrt{3}} \right)^2 \right) \right]^{1/2} = 1$$

#### 36 (b)

When automobile moves in circular path then reaction on inner wheel and outer wheel will be different

$$R_{
m inner} = rac{M}{2} \Big[ g - rac{v^2 h}{ra} \Big]$$
 and  $R_{
m outer} = rac{M}{2} \Big[ g + rac{v^2 h}{ra} \Big]$ 

In critical condition 
$$v_{\mathrm{safe}} = \sqrt{\frac{gra}{h}}$$

If v is equal or more than the critical value then reaction on inner wheel becomes zero. So it leaves the ground first

